# American Institute of Mathematical Sciences

March  2013, 6(1): 137-157. doi: 10.3934/krm.2013.6.137

## Diffusion asymptotics of a kinetic model for gaseous mixtures

 1 UPMC Univ Paris 06, UMR 7598 LJLL, Paris, F-75005 2 MAP5, CNRS UMR 8145, Université Paris Descartes, Sorbonne Paris Cité, 45 Rue des Saints Pères, F-75006 Paris, France 3 CMLA, ENS Cachan, PRES UniverSud Paris, 61 Avenue du Président Wilson, F-94235 Cachan Cedex, France 4 Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1 - 27100 Pavia

Received  July 2012 Revised  October 2012 Published  December 2012

In this work, we consider the non-reactive fully elastic Boltzmann equations for mixtures in the diffusive scaling. We mainly use a Hilbert expansion of the distribution functions. After briefly recalling the H-theorem, the lower-order non trivial equality obtained from the Boltzmann equations leads to a linear functional equation in the velocity variable. This equation is solved thanks to the Fredholm alternative. Since we consider multicomponent mixtures, the classical techniques introduced by Grad cannot be applied, and we propose a new method to treat the terms involving particles with different masses.
Citation: Laurent Boudin, Bérénice Grec, Milana Pavić, Francesco Salvarani. Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinetic & Related Models, 2013, 6 (1) : 137-157. doi: 10.3934/krm.2013.6.137
##### References:

show all references

##### References:
 [1] Céline Baranger, Marzia Bisi, Stéphane Brull, Laurent Desvillettes. On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases. Kinetic & Related Models, 2018, 11 (4) : 821-858. doi: 10.3934/krm.2018033 [2] Vincent Giovangigli, Wen-An Yong. Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion. Kinetic & Related Models, 2015, 8 (1) : 79-116. doi: 10.3934/krm.2015.8.79 [3] Vincent Giovangigli, Wen-An Yong. Erratum: Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion''. Kinetic & Related Models, 2016, 9 (4) : 813-813. doi: 10.3934/krm.2016018 [4] Juan Campos, Rafael Obaya, Massimo Tarallo. Recurrent equations with sign and Fredholm alternative. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 959-977. doi: 10.3934/dcdss.2016036 [5] Massimo Tarallo. Fredholm's alternative for a class of almost periodic linear systems. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2301-2313. doi: 10.3934/dcds.2012.32.2301 [6] Juan Campos, Rafael Obaya, Massimo Tarallo. Favard theory and fredholm alternative for disconjugate recurrent second order equations. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1199-1232. doi: 10.3934/cpaa.2017059 [7] Anton Trushechkin. Microscopic and soliton-like solutions of the Boltzmann--Enskog and generalized Enskog equations for elastic and inelastic hard spheres. Kinetic & Related Models, 2014, 7 (4) : 755-778. doi: 10.3934/krm.2014.7.755 [8] Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044 [9] Marzia Bisi, Laurent Desvillettes. Some remarks about the scaling of systems of reactive Boltzmann equations. Kinetic & Related Models, 2008, 1 (4) : 515-520. doi: 10.3934/krm.2008.1.515 [10] Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205 [11] Mario Pulvirenti, Sergio Simonella, Anton Trushechkin. Microscopic solutions of the Boltzmann-Enskog equation in the series representation. Kinetic & Related Models, 2018, 11 (4) : 911-931. doi: 10.3934/krm.2018036 [12] Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307 [13] Raffaele Esposito, Yan Guo, Rossana Marra. Stability of a Vlasov-Boltzmann binary mixture at the phase transition on an interval. Kinetic & Related Models, 2013, 6 (4) : 761-787. doi: 10.3934/krm.2013.6.761 [14] Feride Tığlay. Integrating evolution equations using Fredholm determinants. Electronic Research Archive, 2021, 29 (2) : 2141-2147. doi: 10.3934/era.2020109 [15] Zheng Liu, Tianxiao Wang. A class of stochastic Fredholm-algebraic equations and applications in finance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3879-3903. doi: 10.3934/dcdsb.2020267 [16] Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004 [17] Kevin Zumbrun. L∞ resolvent bounds for steady Boltzmann's Equation. Kinetic & Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048 [18] Laurent Desvillettes, Clément Mouhot, Cédric Villani. Celebrating Cercignani's conjecture for the Boltzmann equation. Kinetic & Related Models, 2011, 4 (1) : 277-294. doi: 10.3934/krm.2011.4.277 [19] William Guo. The Laplace transform as an alternative general method for solving linear ordinary differential equations. STEM Education, 2021, 1 (4) : 309-329. doi: 10.3934/steme.2021020 [20] Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic & Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020

2020 Impact Factor: 1.432