May  2013, 33(5): 2189-2209. doi: 10.3934/dcds.2013.33.2189

Application of the subharmonic Melnikov method to piecewise-smooth systems

1. 

Mathematics Division, Department of Information Engineering, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan

Received  December 2011 Revised  July 2012 Published  December 2012

We extend a refined version of the subharmonic Melnikov method to piecewise-smooth systems and demonstrate the theory for bi- and trilinear oscillators. Fundamental results for approximating solutions of piecewise-smooth systems by those of smooth systems are given and used to obtain the main result. Special attention is paid to degenerate resonance behavior, and analytical results are illustrated by numerical ones.
Citation: Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189
References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", $2^{nd}$ edition, (1989).   Google Scholar

[2]

V. I. Babitsky and V. L. Krupenin, "Vibration of Strongly Nonlinear Discontinuous Systems,", Springer-Verlag, (2001).   Google Scholar

[3]

A. Buică, J. Llibre and O. Makarenkov, Asymptotic stability of periodic solutions for nonsmooth differential equations with application to the nonsmooth van der Pol oscillator,, SIAM J. Math. Anal., 40 (2009), 2478.  doi: 10.1137/070701091.  Google Scholar

[4]

T. K. Caughey, Sinusoidal excitation of a system with bilinear hysteresis,, Trans. ASME, 27 (1960), 640.   Google Scholar

[5]

C. Chicone, Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators,, J. Differential Equations, 112 (1994), 407.  doi: 10.1006/jdeq.1994.1110.  Google Scholar

[6]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, "Piecewise-Smooth Dynamical Systems: Theory and Applications,", Springer-Verlag, (2008).   Google Scholar

[7]

E. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede and X. Wang, "AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont),", Concordia University, (1997).   Google Scholar

[8]

J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of large scale nonlinear oscillations in suspension bridges,, Z. Angew. Math. Phys., 40 (1989), 172.  doi: 10.1007/BF00944997.  Google Scholar

[9]

I. V. Gorelyshev and A. I. Neishtadt, On the adiabatic theory of perturbations for systems with elastic reflections,, J. Appl. Math. Mech. (PMM), 70 (2006), 4.  doi: 10.1016/j.jappmathmech.2006.03.015.  Google Scholar

[10]

I. V. Gorelyshev and A. I. Neishtadt, Jump in adiabatic invariant at a transition between modes of motion for systems with impacts,, Nonlinearity, 21 (2008), 661.  doi: 10.1088/0951-7715/21/4/002.  Google Scholar

[11]

B. D. Greenspan and P. Holmes, Homoclinic orbits, subharmonics and global bifurcations in forced oscillations,, in, (1983), 172.   Google Scholar

[12]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations ofVector Fields,", Springer-Verlag, (1983).   Google Scholar

[13]

V. K. Melnikov, On the stability of the center for time-periodic perturbations,, Trans. Moscow Math. Soc., 12 (1963), 1.   Google Scholar

[14]

J. A. Murdock, "Perturbations: Theory and Methods,", John Wiley & Sons, (1991).   Google Scholar

[15]

A. H. Nayfeh and D. T. Mook, "Nonlinear Oscillations,", John Wiley & Sons, (1979).   Google Scholar

[16]

S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,", Springer-Verlag, (1990).   Google Scholar

[17]

K. Yagasaki, The Melnikov theory for subharmonics and their bifurcations in forced oscillations,, SIAM J. Appl. Math., 56 (1996), 1720.  doi: 10.1137/S0036139995281317.  Google Scholar

[18]

K. Yagasaki, Second-order averaging and Melnikov analyses for forced non-linear oscillators,, J. Sound Vibration, 190 (1996), 587.  doi: 10.1006/jsvi.1996.0080.  Google Scholar

[19]

K. Yagasaki, Periodic and homoclinic motions in forced, coupled oscillators,, Nonlinear Dynam., 20 (1999), 319.  doi: 10.1023/A:1008336402517.  Google Scholar

[20]

K. Yagasaki, Melnikov's method and codimension-two bifurcations in forced oscillations,, J. Differential Equations, 185 (2002), 1.  doi: 10.1006/jdeq.2002.4177.  Google Scholar

[21]

K. Yagasaki, Degenerate resonances in forced oscillators,, Discrete Continuous Dynam. Systems - B, 3 (2003), 423.  doi: 10.3934/dcdsb.2003.3.423.  Google Scholar

[22]

K. Yagasaki, Nonlinear dynamics of vibrating microcantilevers in tapping mode atomic force microscopy,, Phys. Rev. B, 70 (2004).   Google Scholar

[23]

K. Yagasaki, Bifurcations and chaos in vibrating microcantilevers of tapping mode atomic force microscopy,, Int. J. Non-Linear Mech., 42 (2007), 658.   Google Scholar

show all references

References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", $2^{nd}$ edition, (1989).   Google Scholar

[2]

V. I. Babitsky and V. L. Krupenin, "Vibration of Strongly Nonlinear Discontinuous Systems,", Springer-Verlag, (2001).   Google Scholar

[3]

A. Buică, J. Llibre and O. Makarenkov, Asymptotic stability of periodic solutions for nonsmooth differential equations with application to the nonsmooth van der Pol oscillator,, SIAM J. Math. Anal., 40 (2009), 2478.  doi: 10.1137/070701091.  Google Scholar

[4]

T. K. Caughey, Sinusoidal excitation of a system with bilinear hysteresis,, Trans. ASME, 27 (1960), 640.   Google Scholar

[5]

C. Chicone, Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators,, J. Differential Equations, 112 (1994), 407.  doi: 10.1006/jdeq.1994.1110.  Google Scholar

[6]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, "Piecewise-Smooth Dynamical Systems: Theory and Applications,", Springer-Verlag, (2008).   Google Scholar

[7]

E. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede and X. Wang, "AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont),", Concordia University, (1997).   Google Scholar

[8]

J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of large scale nonlinear oscillations in suspension bridges,, Z. Angew. Math. Phys., 40 (1989), 172.  doi: 10.1007/BF00944997.  Google Scholar

[9]

I. V. Gorelyshev and A. I. Neishtadt, On the adiabatic theory of perturbations for systems with elastic reflections,, J. Appl. Math. Mech. (PMM), 70 (2006), 4.  doi: 10.1016/j.jappmathmech.2006.03.015.  Google Scholar

[10]

I. V. Gorelyshev and A. I. Neishtadt, Jump in adiabatic invariant at a transition between modes of motion for systems with impacts,, Nonlinearity, 21 (2008), 661.  doi: 10.1088/0951-7715/21/4/002.  Google Scholar

[11]

B. D. Greenspan and P. Holmes, Homoclinic orbits, subharmonics and global bifurcations in forced oscillations,, in, (1983), 172.   Google Scholar

[12]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations ofVector Fields,", Springer-Verlag, (1983).   Google Scholar

[13]

V. K. Melnikov, On the stability of the center for time-periodic perturbations,, Trans. Moscow Math. Soc., 12 (1963), 1.   Google Scholar

[14]

J. A. Murdock, "Perturbations: Theory and Methods,", John Wiley & Sons, (1991).   Google Scholar

[15]

A. H. Nayfeh and D. T. Mook, "Nonlinear Oscillations,", John Wiley & Sons, (1979).   Google Scholar

[16]

S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,", Springer-Verlag, (1990).   Google Scholar

[17]

K. Yagasaki, The Melnikov theory for subharmonics and their bifurcations in forced oscillations,, SIAM J. Appl. Math., 56 (1996), 1720.  doi: 10.1137/S0036139995281317.  Google Scholar

[18]

K. Yagasaki, Second-order averaging and Melnikov analyses for forced non-linear oscillators,, J. Sound Vibration, 190 (1996), 587.  doi: 10.1006/jsvi.1996.0080.  Google Scholar

[19]

K. Yagasaki, Periodic and homoclinic motions in forced, coupled oscillators,, Nonlinear Dynam., 20 (1999), 319.  doi: 10.1023/A:1008336402517.  Google Scholar

[20]

K. Yagasaki, Melnikov's method and codimension-two bifurcations in forced oscillations,, J. Differential Equations, 185 (2002), 1.  doi: 10.1006/jdeq.2002.4177.  Google Scholar

[21]

K. Yagasaki, Degenerate resonances in forced oscillators,, Discrete Continuous Dynam. Systems - B, 3 (2003), 423.  doi: 10.3934/dcdsb.2003.3.423.  Google Scholar

[22]

K. Yagasaki, Nonlinear dynamics of vibrating microcantilevers in tapping mode atomic force microscopy,, Phys. Rev. B, 70 (2004).   Google Scholar

[23]

K. Yagasaki, Bifurcations and chaos in vibrating microcantilevers of tapping mode atomic force microscopy,, Int. J. Non-Linear Mech., 42 (2007), 658.   Google Scholar

[1]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[4]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[5]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[6]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[9]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[10]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[11]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[12]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[13]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[14]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[15]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[16]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[17]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[18]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[19]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[20]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]