December  2012, 7(4): 927-939. doi: 10.3934/nhm.2012.7.927

On a class of reversible elliptic systems

1. 

Department of Mathematics, University of Wisconsin–Madison, Madison, WI 53706, United States

Received  April 2012 Revised  July 2012 Published  December 2012

The existence of periodic and spatially heteroclinic solutions is studied for a class of semilinear elliptic partial differential equations.
Citation: Paul H. Rabinowitz. On a class of reversible elliptic systems. Networks & Heterogeneous Media, 2012, 7 (4) : 927-939. doi: 10.3934/nhm.2012.7.927
References:
[1]

S. Aubry and P. Y. LeDaeron, The discrete Frenkel-Kantorova model and its extensions I-Exact results for the ground states,, Physica, 8D (1983), 381. doi: 10.1016/0167-2789(83)90233-6. Google Scholar

[2]

J. Mather, Existence of quasi-periodic orbits for twist homeomorphisms of the annulus,, Topology, 21 (1982), 457. doi: 10.1016/0040-9383(82)90023-4. Google Scholar

[3]

J. Mather, Variational construction of connecting orbits,, Ann. Inst. Fourier ;(Grenoble), 43 (1993), 1349. Google Scholar

[4]

J. Moser, Minimal solutions of variational problems on a torus,, Ann. Inst. Poincare, 3 (1986), 229. Google Scholar

[5]

V. Bangert, On minimal laminations of the torus,, Ann. Inst. H. Poincaré, 6 (1989), 95. Google Scholar

[6]

P. Rabinowitz and E. Stredulinsky, "Extensions of Moser-Bangert Theory: Locally Minimal Solutions,", Progress in Nonlinear Differential Equations and Their Applications, 81 (2011). doi: 10.1007/978-0-8176-8117-3. Google Scholar

[7]

U. Bessi, Many solutions of elliptic problems on $\mathbbR^n$ of irrational slope,, Comm. Partial Differential Equations, 30 (2005), 1773. doi: 10.1080/03605300500299992. Google Scholar

[8]

U. Bessi, Slope-changing solutions of elliptic problems on $\mathbbR^n$,, Nonlinear Anal., 68 (2008), 3923. doi: 10.1016/j.na.2007.04.031. Google Scholar

[9]

F. Alessio, L. Jeanjean and P. Montecchiari, Stationary layered solutions in $\mathbbR^{2}$ for a class of non autonomous Allen-Cahn equations,, Calc. Var. Partial Differential Equations, 11 (2000), 177. doi: 10.1007/s005260000036. Google Scholar

[10]

F. Alessio, L. Jeanjean and P. Montecchiari, Existence of infinitely many stationary layered solutions in $\mathbbR^{2}$ for a class of periodic Allen-Cahn equations,, Comm. Partial Differential Equations, 27 (2002), 1537. doi: 10.1081/PDE-120005848. Google Scholar

[11]

F. Alessio and P. Montecchiari, Entire solutions in $\mathbbR^{2}$ for a class of Allen-Cahn equations,, ESAIM Control Optim. Calc. Var., 11 (2005), 633. doi: 10.1051/cocv:2005023. Google Scholar

[12]

F. Alessio and P. Montecchiari, Multiplicity of entire solutions for a class of almost periodic Allen-Cahn type equations,, Adv. Nonlinear Stud., 5 (2005), 515. Google Scholar

[13]

M. Novaga and E. Valdinoci, Bump solutions for the mesoscopic Allen-Cahn equation in periodic media,, Calc. Var. Partial Differential Equations, 40 (2011), 37. doi: 10.1007/s00526-010-0332-4. Google Scholar

[14]

R. de la Llave and E. Valdinoci, Multiplicity results for interfaces of Ginzburg-Landau Allen-Cahn equations in periodic media,, Adv. Math., 215 (2007), 379. doi: 10.1016/j.aim.2007.03.013. Google Scholar

[15]

R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations,, Ann. Inst. H. Poincaré Anal. Non Lineaire, 26 (2009), 1309. doi: 10.1016/j.anihpc.2008.11.002. Google Scholar

[16]

E. Valdinoci, Plane-like minimizers in periodic media: Jet flows and Ginzburg-Landau-type functionals,, J. Reine Angew. Math., 574 (2004), 147. doi: 10.1515/crll.2004.068. Google Scholar

[17]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Second edition, 224 (1983). Google Scholar

[18]

P. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert,, Ann. Inst. H. Poincare Anal. Non Lineaire, 21 (2004), 673. doi: 10.1016/j.anihpc.2003.10.002. Google Scholar

[19]

P. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert. II,, Adv. Nonlinear Stud., 4 (2004), 377. Google Scholar

[20]

S. Bolotin, Existence of homoclinic motions. (Russian),, Vestnik Moskov. Univ., (1983), 98. Google Scholar

[21]

A. Anane, O. Chakrone, Z. El Allali and I. Hadi., A unique continuation property for linear elliptic systems and nonresonance problems,, Electron. J. Differential Equations, (2001). Google Scholar

[22]

M. Protter, Unique continuation for elliptic equations,, Trans. Amer. Math. Soc., 95 (1960), 81. Google Scholar

[23]

R. Pederson, On the unique continuation theorem for certain second and fourth order equations,, Comm. Pure Appl. Math., 11 (1958), 67. Google Scholar

[24]

P. Rabinowitz, Heteroclinics for a reversible Hamiltonian system,, Ergodic Theory Dynam. Systems, 14 (1994), 817. doi: 10.1017/S0143385700008178. Google Scholar

[25]

P. Rabinowitz, A note on a class of reversible Hamiltonian systems,, Adv. Nonlinear Stud., 9 (2009), 815. Google Scholar

[26]

T. Maxwell, Heteroclinic chains for a reversible Hamiltonian system,, Nonlinear Analysis, 28 (1997), 871. doi: 10.1016/0362-546X(95)00193-Y. Google Scholar

[27]

R. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, 65 (1975). Google Scholar

show all references

References:
[1]

S. Aubry and P. Y. LeDaeron, The discrete Frenkel-Kantorova model and its extensions I-Exact results for the ground states,, Physica, 8D (1983), 381. doi: 10.1016/0167-2789(83)90233-6. Google Scholar

[2]

J. Mather, Existence of quasi-periodic orbits for twist homeomorphisms of the annulus,, Topology, 21 (1982), 457. doi: 10.1016/0040-9383(82)90023-4. Google Scholar

[3]

J. Mather, Variational construction of connecting orbits,, Ann. Inst. Fourier ;(Grenoble), 43 (1993), 1349. Google Scholar

[4]

J. Moser, Minimal solutions of variational problems on a torus,, Ann. Inst. Poincare, 3 (1986), 229. Google Scholar

[5]

V. Bangert, On minimal laminations of the torus,, Ann. Inst. H. Poincaré, 6 (1989), 95. Google Scholar

[6]

P. Rabinowitz and E. Stredulinsky, "Extensions of Moser-Bangert Theory: Locally Minimal Solutions,", Progress in Nonlinear Differential Equations and Their Applications, 81 (2011). doi: 10.1007/978-0-8176-8117-3. Google Scholar

[7]

U. Bessi, Many solutions of elliptic problems on $\mathbbR^n$ of irrational slope,, Comm. Partial Differential Equations, 30 (2005), 1773. doi: 10.1080/03605300500299992. Google Scholar

[8]

U. Bessi, Slope-changing solutions of elliptic problems on $\mathbbR^n$,, Nonlinear Anal., 68 (2008), 3923. doi: 10.1016/j.na.2007.04.031. Google Scholar

[9]

F. Alessio, L. Jeanjean and P. Montecchiari, Stationary layered solutions in $\mathbbR^{2}$ for a class of non autonomous Allen-Cahn equations,, Calc. Var. Partial Differential Equations, 11 (2000), 177. doi: 10.1007/s005260000036. Google Scholar

[10]

F. Alessio, L. Jeanjean and P. Montecchiari, Existence of infinitely many stationary layered solutions in $\mathbbR^{2}$ for a class of periodic Allen-Cahn equations,, Comm. Partial Differential Equations, 27 (2002), 1537. doi: 10.1081/PDE-120005848. Google Scholar

[11]

F. Alessio and P. Montecchiari, Entire solutions in $\mathbbR^{2}$ for a class of Allen-Cahn equations,, ESAIM Control Optim. Calc. Var., 11 (2005), 633. doi: 10.1051/cocv:2005023. Google Scholar

[12]

F. Alessio and P. Montecchiari, Multiplicity of entire solutions for a class of almost periodic Allen-Cahn type equations,, Adv. Nonlinear Stud., 5 (2005), 515. Google Scholar

[13]

M. Novaga and E. Valdinoci, Bump solutions for the mesoscopic Allen-Cahn equation in periodic media,, Calc. Var. Partial Differential Equations, 40 (2011), 37. doi: 10.1007/s00526-010-0332-4. Google Scholar

[14]

R. de la Llave and E. Valdinoci, Multiplicity results for interfaces of Ginzburg-Landau Allen-Cahn equations in periodic media,, Adv. Math., 215 (2007), 379. doi: 10.1016/j.aim.2007.03.013. Google Scholar

[15]

R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations,, Ann. Inst. H. Poincaré Anal. Non Lineaire, 26 (2009), 1309. doi: 10.1016/j.anihpc.2008.11.002. Google Scholar

[16]

E. Valdinoci, Plane-like minimizers in periodic media: Jet flows and Ginzburg-Landau-type functionals,, J. Reine Angew. Math., 574 (2004), 147. doi: 10.1515/crll.2004.068. Google Scholar

[17]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Second edition, 224 (1983). Google Scholar

[18]

P. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert,, Ann. Inst. H. Poincare Anal. Non Lineaire, 21 (2004), 673. doi: 10.1016/j.anihpc.2003.10.002. Google Scholar

[19]

P. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert. II,, Adv. Nonlinear Stud., 4 (2004), 377. Google Scholar

[20]

S. Bolotin, Existence of homoclinic motions. (Russian),, Vestnik Moskov. Univ., (1983), 98. Google Scholar

[21]

A. Anane, O. Chakrone, Z. El Allali and I. Hadi., A unique continuation property for linear elliptic systems and nonresonance problems,, Electron. J. Differential Equations, (2001). Google Scholar

[22]

M. Protter, Unique continuation for elliptic equations,, Trans. Amer. Math. Soc., 95 (1960), 81. Google Scholar

[23]

R. Pederson, On the unique continuation theorem for certain second and fourth order equations,, Comm. Pure Appl. Math., 11 (1958), 67. Google Scholar

[24]

P. Rabinowitz, Heteroclinics for a reversible Hamiltonian system,, Ergodic Theory Dynam. Systems, 14 (1994), 817. doi: 10.1017/S0143385700008178. Google Scholar

[25]

P. Rabinowitz, A note on a class of reversible Hamiltonian systems,, Adv. Nonlinear Stud., 9 (2009), 815. Google Scholar

[26]

T. Maxwell, Heteroclinic chains for a reversible Hamiltonian system,, Nonlinear Analysis, 28 (1997), 871. doi: 10.1016/0362-546X(95)00193-Y. Google Scholar

[27]

R. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, 65 (1975). Google Scholar

[1]

Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025

[2]

Maria Carvalho, Alexander Lohse, Alexandre A. P. Rodrigues. Moduli of stability for heteroclinic cycles of periodic solutions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6541-6564. doi: 10.3934/dcds.2019284

[3]

Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure & Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733

[4]

Zhigang Wang, Lei Wang, Yachun Li. Renormalized entropy solutions for degenerate parabolic-hyperbolic equations with time-space dependent coefficients. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1163-1182. doi: 10.3934/cpaa.2013.12.1163

[5]

Marcelo Marchesin. The mass dependence of the period of the periodic solutions of the Sitnikov problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 597-609. doi: 10.3934/dcdss.2008.1.597

[6]

Alexandre A. P. Rodrigues. Moduli for heteroclinic connections involving saddle-foci and periodic solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3155-3182. doi: 10.3934/dcds.2015.35.3155

[7]

Guowei Yu. Ray and heteroclinic solutions of Hamiltonian systems with 2 degrees of freedom. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4769-4793. doi: 10.3934/dcds.2013.33.4769

[8]

Francesca Alessio, Carlo Carminati, Piero Montecchiari. Heteroclinic motions joining almost periodic solutions for a class of Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 569-584. doi: 10.3934/dcds.1999.5.569

[9]

Paul H. Rabinowitz. A new variational characterization of spatially heteroclinic solutions of a semilinear elliptic PDE. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 507-515. doi: 10.3934/dcds.2004.10.507

[10]

Yong Zhang, Xingyu Yang, Baixun Li. Distribution-free solutions to the extended multi-period newsboy problem. Journal of Industrial & Management Optimization, 2017, 13 (2) : 633-647. doi: 10.3934/jimo.2016037

[11]

Yavdat Il'yasov, Nadir Sari. Solutions of minimal period for a Hamiltonian system with a changing sign potential. Communications on Pure & Applied Analysis, 2005, 4 (1) : 175-185. doi: 10.3934/cpaa.2005.4.175

[12]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[13]

David Yang Gao. Solutions and optimality criteria to box constrained nonconvex minimization problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 293-304. doi: 10.3934/jimo.2007.3.293

[14]

Alberto Cabada, J. Ángel Cid. Heteroclinic solutions for non-autonomous boundary value problems with singular $\Phi$-Laplacian operators. Conference Publications, 2009, 2009 (Special) : 118-122. doi: 10.3934/proc.2009.2009.118

[15]

Giorgio Fusco. Layered solutions to the vector Allen-Cahn equation in $\mathbb{R}^2$. Minimizers and heteroclinic connections. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1807-1841. doi: 10.3934/cpaa.2017088

[16]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. A functional-analytic technique for the study of analytic solutions of PDEs. Conference Publications, 2015, 2015 (special) : 923-935. doi: 10.3934/proc.2015.0923

[17]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[18]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

[19]

Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175

[20]

Hai-Xia Li, Jian-Hua Wu, Yan-Ling Li, Chun-An Liu. Positive solutions to the unstirred chemostat model with Crowley-Martin functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2951-2966. doi: 10.3934/dcdsb.2017128

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]