• Previous Article
    Smoothness of the flow map for low-regularity solutions of the Camassa-Holm equations
  • DCDS Home
  • This Issue
  • Next Article
    Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom
2013, 33(7): 2809-2827. doi: 10.3934/dcds.2013.33.2809

Lipschitz metric for the Camassa--Holm equation on the line

1. 

Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim

2. 

Centre of Mathematics for Applications, University of Oslo, NO-0316 Oslo

Received  March 2012 Revised  May 2012 Published  January 2013

We study stability of solutions of the Cauchy problem on the line for the Camassa--Holm equation $u_t-u_{xxt}+3uu_x-2u_xu_{xx}-uu_{xxx}=0$ with initial data $u_0$. In particular, we derive a new Lipschitz metric $d_D$ with the property that for two solutions $u$ and $v$ of the equation we have $d_D(u(t),v(t))\le e^{Ct} d_D(u_0,v_0)$. The relationship between this metric and the usual norms in $H^1$ and $L^\infty$ is clarified. The method extends to the generalized hyperelastic-rod equation $u_t-u_{xxt}+f(u)_x-f(u)_{xxx}+(g(u)+\frac12 f''(u)(u_x)^2)_x=0$ (for $f$ without inflection points).
Citation: Katrin Grunert, Helge Holden, Xavier Raynaud. Lipschitz metric for the Camassa--Holm equation on the line. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2809-2827. doi: 10.3934/dcds.2013.33.2809
References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215. doi: 10.1007/s00205-006-0010-z.

[2]

A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter-Saxton equation,, J. Math. Pures Appl., 94 (2010), 68. doi: 10.1016/j.matpur.2010.02.005.

[3]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solutions,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661.

[4]

R. Camassa, D. D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.

[5]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303.

[6]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229. doi: 10.1007/BF02392586.

[7]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation,, Math. Z., 233 (2000), 75. doi: 10.1007/PL00004793.

[8]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Rat. Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2.

[9]

H.-H. Dai, Exact traveling-wave solutions of an integrable equation arising in hyperelastic rods,, Wave Motion, 28 (1998), 367. doi: 10.1016/S0165-2125(98)00014-6.

[10]

H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod,, Acta Mech., 127 (1998), 193. doi: 10.1007/BF01170373.

[11]

H.-H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331. doi: 10.1098/rspa.2000.0520.

[12]

K. Grunert, H. Holden and X. Raynaud, Lipschitz metric for the periodic Camassa-Holm equation,, J. Differential Equations, 250 (2011), 1460. doi: 10.1016/j.jde.2010.07.006.

[13]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511. doi: 10.1080/03605300601088674.

[14]

H. Holden and X. Raynaud, Global conservative multipeakon solutions of the Camassa-Holm equation,, J. Hyperbolic Differ. Equ., 4 (2007), 39. doi: 10.1142/S0219891607001045.

[15]

H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation,, J. Differential Equations, 233 (2007), 448. doi: 10.1016/j.jde.2006.09.007.

show all references

References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215. doi: 10.1007/s00205-006-0010-z.

[2]

A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter-Saxton equation,, J. Math. Pures Appl., 94 (2010), 68. doi: 10.1016/j.matpur.2010.02.005.

[3]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solutions,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661.

[4]

R. Camassa, D. D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.

[5]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303.

[6]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229. doi: 10.1007/BF02392586.

[7]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation,, Math. Z., 233 (2000), 75. doi: 10.1007/PL00004793.

[8]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Rat. Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2.

[9]

H.-H. Dai, Exact traveling-wave solutions of an integrable equation arising in hyperelastic rods,, Wave Motion, 28 (1998), 367. doi: 10.1016/S0165-2125(98)00014-6.

[10]

H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod,, Acta Mech., 127 (1998), 193. doi: 10.1007/BF01170373.

[11]

H.-H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331. doi: 10.1098/rspa.2000.0520.

[12]

K. Grunert, H. Holden and X. Raynaud, Lipschitz metric for the periodic Camassa-Holm equation,, J. Differential Equations, 250 (2011), 1460. doi: 10.1016/j.jde.2010.07.006.

[13]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511. doi: 10.1080/03605300601088674.

[14]

H. Holden and X. Raynaud, Global conservative multipeakon solutions of the Camassa-Holm equation,, J. Hyperbolic Differ. Equ., 4 (2007), 39. doi: 10.1142/S0219891607001045.

[15]

H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation,, J. Differential Equations, 233 (2007), 448. doi: 10.1016/j.jde.2006.09.007.

[1]

Katrin Grunert, Helge Holden, Xavier Raynaud. Global conservative solutions to the Camassa--Holm equation for initial data with nonvanishing asymptotics. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4209-4227. doi: 10.3934/dcds.2012.32.4209

[2]

Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230

[3]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

[4]

Alberto Bressan, Geng Chen, Qingtian Zhang. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 25-42. doi: 10.3934/dcds.2015.35.25

[5]

Min Zhu, Shuanghu Zhang. On the blow-up of solutions to the periodic modified integrable Camassa--Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2347-2364. doi: 10.3934/dcds.2016.36.2347

[6]

Helge Holden, Xavier Raynaud. A convergent numerical scheme for the Camassa--Holm equation based on multipeakons. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 505-523. doi: 10.3934/dcds.2006.14.505

[7]

Xinglong Wu, Boling Guo. Persistence properties and infinite propagation for the modified 2-component Camassa--Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3211-3223. doi: 10.3934/dcds.2013.33.3211

[8]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[9]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[10]

Octavian G. Mustafa. Global conservative solutions of the Dullin-Gottwald-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 575-594. doi: 10.3934/dcds.2007.19.575

[11]

Xinglong Wu. On the Cauchy problem of a three-component Camassa--Holm equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2827-2854. doi: 10.3934/dcds.2016.36.2827

[12]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[13]

Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029

[14]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[15]

Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483

[16]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[17]

Shaoyong Lai, Qichang Xie, Yunxi Guo, YongHong Wu. The existence of weak solutions for a generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 45-57. doi: 10.3934/cpaa.2011.10.45

[18]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[19]

Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159

[20]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]