July  2013, 33(7): 2829-2859. doi: 10.3934/dcds.2013.33.2829

Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom

1. 

School of Mathematics, Institute for Advanced Study, Einstein Drive, Simonyi Hall, Princeton, New Jersey, 08540, United States

Received  March 2012 Revised  April 2012 Published  January 2013

In this paper we consider general nearly integrable analytic Hamiltonian systems of one and a half degrees of freedom which are a trigonometric polynomial in the angular state variable. In the resonances of these systems generically appear hyperbolic periodic orbits. We study the possible transversal intersections of their invariant manifolds, which is exponentially small, and we give an asymptotic formula for the measure of the splitting. We see that its asymptotic first order is of the form $K \varepsilon^{\beta} \text{e}^{-a/\varepsilon}$ and we identify the constants $K,\beta,a$ in terms of the system features. We compare our results with the classical Melnikov Theory and we show that, typically, in the resonances of nearly integrable systems Melnikov Theory fails to predict correctly the constants $K$ and $\beta$ involved in the formula.
Citation: Marcel Guardia. Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2829-2859. doi: 10.3934/dcds.2013.33.2829
References:
[1]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, "Dynamical Systems III,", 3 of Encyclopaedia Math. Sci., 3 (1988).   Google Scholar

[2]

V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations,, Russian Math. Surveys, 18 (1963), 9.   Google Scholar

[3]

I. Baldomá, The inner equation for one and a half degrees of freedom rapidly forced Hamiltonian systems,, Nonlinearity, 19 (2006), 1415.  doi: 10.1088/0951-7715/19/6/011.  Google Scholar

[4]

I. Baldomá and E. Fontich, Exponentially small splitting of invariant manifolds of parabolic points,, Mem. Amer. Math. Soc., 167 (2004).   Google Scholar

[5]

I. Baldomá and E. Fontich, Exponentially small splitting of separatrices in a weakly hyperbolic case,, J. Differential Equations, 210 (2005), 106.  doi: 10.1016/j.jde.2004.10.017.  Google Scholar

[6]

I. Baldomá, E. Fontich, M. Guàrdia and T. M. Seara, Exponentially small splitting of separatrices beyond melnikov analysis: Rigorous results,, preprint, (2011).  doi: 10.1016/j.jde.2012.09.003.  Google Scholar

[7]

L. Chierchia and G. Gallavotti, Drift and diffusion in phase space,, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994).   Google Scholar

[8]

A. Delshams, V. Gelfreich, À. Jorba and T. M. Seara, Exponentially small splitting of separatrices under fast quasiperiodic forcing,, Comm. Math. Phys., 189 (1997), 35.  doi: 10.1007/s002200050190.  Google Scholar

[9]

A. Delshams, P. Gutiérrez and T. M. Seara, Exponentially small splitting for whiskered tori in Hamiltonian sysems: Flow-box coordinates and upper bounds,, Discrete Contin. Dyn. Syst., 11 (2004), 785.  doi: 10.3934/dcds.2004.11.785.  Google Scholar

[10]

A. Delshams and T. M. Seara, An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum,, Comm. Math. Phys., 150 (1992), 433.   Google Scholar

[11]

A. Delshams and T. M. Seara, Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom,, Math. Phys. Electron. J., 3 (1997).   Google Scholar

[12]

E. Fontich, Exponentially small upper bounds for the splitting of separatrices for high frequency periodic perturbations,, Nonlinear Anal., 20 (1993), 733.  doi: 10.1016/0362-546X(93)90031-M.  Google Scholar

[13]

E. Fontich, Rapidly forced planar vector fields and splitting of separatrices,, J. Differential Equations, 119 (1995), 310.  doi: 10.1006/jdeq.1995.1093.  Google Scholar

[14]

V. G. Gelfreich, Separatrices splitting for the rapidly forced pendulum,, in, 12 (1994), 47.   Google Scholar

[15]

V. G. Gelfreich, Melnikov method and exponentially small splitting of separatrices,, Phys. D, 101 (1997), 227.  doi: 10.1016/S0167-2789(96)00133-9.  Google Scholar

[16]

V. G. Gelfreich, Reference systems for splittings of separatrices,, Nonlinearity, 10 (1997), 175.  doi: 10.1088/0951-7715/10/1/012.  Google Scholar

[17]

V. G. Gelfreich, Separatrix splitting for a high-frequency perturbation of the pendulum,, Russ. J. Math. Phys., 7 (2000), 48.   Google Scholar

[18]

G. Gallavotti, G. Gentile and V. Mastropietro, Separatrix splitting for systems with three time scales,, Comm. Math. Phys., 202 (1999), 197.  doi: 10.1007/s002200050579.  Google Scholar

[19]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer-Verlag, (1983).   Google Scholar

[20]

M. Guardia, C. Olivé and T. Seara, Exponentially small splitting for the pendulum: A classical problem revisited,, J. Nonlinear Sci., 20 (2010), 595.  doi: 10.1007/s00332-010-9068-8.  Google Scholar

[21]

M. Guardia and T. M. Seara, Exponentially and non-exponentially small splitting of separatrices for the pendulum with a fast meromorphic perturbation,, Nonlinearity, 25 (2012), 1367.  doi: 10.1088/0951-7715/25/5/1367.  Google Scholar

[22]

P. Holmes, J. Marsden and J. Scheurle, Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations,, in, 81 (1988).  doi: 10.1090/conm/081/986267.  Google Scholar

[23]

A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function,, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527.   Google Scholar

[24]

P. Lochak, J.-P. Marco and D. Sauzin, On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems,, Mem. Amer. Math. Soc., 163 (2003).   Google Scholar

[25]

V. K. Melnikov, On the stability of the center for time periodic perturbations,, Trans. Moscow Math. Soc., 12 (1963), 1.   Google Scholar

[26]

J. Moser, On invariant curves of area-preserving mappings of an annulus,, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, (1962), 1.   Google Scholar

[27]

A. I. Neĭshtadt, The separation of motions in systems with rapidly rotating phase,, Prikl. Mat. Mekh., 48 (1984), 197.  doi: 10.1016/0021-8928(84)90078-9.  Google Scholar

[28]

C. Olivé, "Càlcul de L'escissió de Separatrius Usant Tècniques de Matching Complex I Ressurgència Aplicades a L'equació de Hamilton-Jacobi,", Ph.D thesis, (2006).   Google Scholar

[29]

C. Olivé, D. Sauzin and T. M. Seara, Resurgence in a Hamilton-Jacobi equation,, in, 53 (2003), 1185.   Google Scholar

[30]

H. Poincaré, Sur le problème des trois corps et les équations de la dynamique,, Acta Mathematica, 13 (1890), 1.   Google Scholar

[31]

D. Sauzin, Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé,, Ann. Ins. Fourier, 45 (1995), 453.   Google Scholar

[32]

D. Sauzin, A new method for measuring the splitting of invariant manifolds,, Ann. Sci. École Norm. Sup., 34 (2001), 159.  doi: 10.1016/S0012-9593(00)01063-6.  Google Scholar

[33]

S. Smale, Diffeomorphisms with many periodic points,, in, (1965), 63.   Google Scholar

[34]

J. Scheurle, J. E. Marsden and P. Holmes, Exponentially small estimates for separatrix splittings,, in, 284 (1991), 187.   Google Scholar

[35]

C. Simó and A. Vieiro, Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps,, Nonlinearity, 22 (2009), 1191.  doi: 10.1088/0951-7715/22/5/012.  Google Scholar

[36]

D. Treschev, Separatrix splitting for a pendulum with rapidly oscillating suspension point,, Russ. J. Math. Phys., 5 (1997), 63.   Google Scholar

show all references

References:
[1]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, "Dynamical Systems III,", 3 of Encyclopaedia Math. Sci., 3 (1988).   Google Scholar

[2]

V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations,, Russian Math. Surveys, 18 (1963), 9.   Google Scholar

[3]

I. Baldomá, The inner equation for one and a half degrees of freedom rapidly forced Hamiltonian systems,, Nonlinearity, 19 (2006), 1415.  doi: 10.1088/0951-7715/19/6/011.  Google Scholar

[4]

I. Baldomá and E. Fontich, Exponentially small splitting of invariant manifolds of parabolic points,, Mem. Amer. Math. Soc., 167 (2004).   Google Scholar

[5]

I. Baldomá and E. Fontich, Exponentially small splitting of separatrices in a weakly hyperbolic case,, J. Differential Equations, 210 (2005), 106.  doi: 10.1016/j.jde.2004.10.017.  Google Scholar

[6]

I. Baldomá, E. Fontich, M. Guàrdia and T. M. Seara, Exponentially small splitting of separatrices beyond melnikov analysis: Rigorous results,, preprint, (2011).  doi: 10.1016/j.jde.2012.09.003.  Google Scholar

[7]

L. Chierchia and G. Gallavotti, Drift and diffusion in phase space,, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994).   Google Scholar

[8]

A. Delshams, V. Gelfreich, À. Jorba and T. M. Seara, Exponentially small splitting of separatrices under fast quasiperiodic forcing,, Comm. Math. Phys., 189 (1997), 35.  doi: 10.1007/s002200050190.  Google Scholar

[9]

A. Delshams, P. Gutiérrez and T. M. Seara, Exponentially small splitting for whiskered tori in Hamiltonian sysems: Flow-box coordinates and upper bounds,, Discrete Contin. Dyn. Syst., 11 (2004), 785.  doi: 10.3934/dcds.2004.11.785.  Google Scholar

[10]

A. Delshams and T. M. Seara, An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum,, Comm. Math. Phys., 150 (1992), 433.   Google Scholar

[11]

A. Delshams and T. M. Seara, Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom,, Math. Phys. Electron. J., 3 (1997).   Google Scholar

[12]

E. Fontich, Exponentially small upper bounds for the splitting of separatrices for high frequency periodic perturbations,, Nonlinear Anal., 20 (1993), 733.  doi: 10.1016/0362-546X(93)90031-M.  Google Scholar

[13]

E. Fontich, Rapidly forced planar vector fields and splitting of separatrices,, J. Differential Equations, 119 (1995), 310.  doi: 10.1006/jdeq.1995.1093.  Google Scholar

[14]

V. G. Gelfreich, Separatrices splitting for the rapidly forced pendulum,, in, 12 (1994), 47.   Google Scholar

[15]

V. G. Gelfreich, Melnikov method and exponentially small splitting of separatrices,, Phys. D, 101 (1997), 227.  doi: 10.1016/S0167-2789(96)00133-9.  Google Scholar

[16]

V. G. Gelfreich, Reference systems for splittings of separatrices,, Nonlinearity, 10 (1997), 175.  doi: 10.1088/0951-7715/10/1/012.  Google Scholar

[17]

V. G. Gelfreich, Separatrix splitting for a high-frequency perturbation of the pendulum,, Russ. J. Math. Phys., 7 (2000), 48.   Google Scholar

[18]

G. Gallavotti, G. Gentile and V. Mastropietro, Separatrix splitting for systems with three time scales,, Comm. Math. Phys., 202 (1999), 197.  doi: 10.1007/s002200050579.  Google Scholar

[19]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer-Verlag, (1983).   Google Scholar

[20]

M. Guardia, C. Olivé and T. Seara, Exponentially small splitting for the pendulum: A classical problem revisited,, J. Nonlinear Sci., 20 (2010), 595.  doi: 10.1007/s00332-010-9068-8.  Google Scholar

[21]

M. Guardia and T. M. Seara, Exponentially and non-exponentially small splitting of separatrices for the pendulum with a fast meromorphic perturbation,, Nonlinearity, 25 (2012), 1367.  doi: 10.1088/0951-7715/25/5/1367.  Google Scholar

[22]

P. Holmes, J. Marsden and J. Scheurle, Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations,, in, 81 (1988).  doi: 10.1090/conm/081/986267.  Google Scholar

[23]

A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function,, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527.   Google Scholar

[24]

P. Lochak, J.-P. Marco and D. Sauzin, On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems,, Mem. Amer. Math. Soc., 163 (2003).   Google Scholar

[25]

V. K. Melnikov, On the stability of the center for time periodic perturbations,, Trans. Moscow Math. Soc., 12 (1963), 1.   Google Scholar

[26]

J. Moser, On invariant curves of area-preserving mappings of an annulus,, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, (1962), 1.   Google Scholar

[27]

A. I. Neĭshtadt, The separation of motions in systems with rapidly rotating phase,, Prikl. Mat. Mekh., 48 (1984), 197.  doi: 10.1016/0021-8928(84)90078-9.  Google Scholar

[28]

C. Olivé, "Càlcul de L'escissió de Separatrius Usant Tècniques de Matching Complex I Ressurgència Aplicades a L'equació de Hamilton-Jacobi,", Ph.D thesis, (2006).   Google Scholar

[29]

C. Olivé, D. Sauzin and T. M. Seara, Resurgence in a Hamilton-Jacobi equation,, in, 53 (2003), 1185.   Google Scholar

[30]

H. Poincaré, Sur le problème des trois corps et les équations de la dynamique,, Acta Mathematica, 13 (1890), 1.   Google Scholar

[31]

D. Sauzin, Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé,, Ann. Ins. Fourier, 45 (1995), 453.   Google Scholar

[32]

D. Sauzin, A new method for measuring the splitting of invariant manifolds,, Ann. Sci. École Norm. Sup., 34 (2001), 159.  doi: 10.1016/S0012-9593(00)01063-6.  Google Scholar

[33]

S. Smale, Diffeomorphisms with many periodic points,, in, (1965), 63.   Google Scholar

[34]

J. Scheurle, J. E. Marsden and P. Holmes, Exponentially small estimates for separatrix splittings,, in, 284 (1991), 187.   Google Scholar

[35]

C. Simó and A. Vieiro, Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps,, Nonlinearity, 22 (2009), 1191.  doi: 10.1088/0951-7715/22/5/012.  Google Scholar

[36]

D. Treschev, Separatrix splitting for a pendulum with rapidly oscillating suspension point,, Russ. J. Math. Phys., 5 (1997), 63.   Google Scholar

[1]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[2]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[3]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[4]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[5]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[6]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[7]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[8]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[9]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[10]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[11]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[12]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[13]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[14]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[15]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[16]

Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

[17]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[18]

Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021005

[19]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020121

[20]

Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]