-
Previous Article
Bifurcation of isolated closed orbits from degenerated singularity in $\mathbb{R}^{3}$
- DCDS Home
- This Issue
-
Next Article
Lipschitz metric for the Camassa--Holm equation on the line
Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom
1. | School of Mathematics, Institute for Advanced Study, Einstein Drive, Simonyi Hall, Princeton, New Jersey, 08540, United States |
References:
[1] |
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, "Dynamical Systems III,", 3 of Encyclopaedia Math. Sci., 3 (1988).
|
[2] |
V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations,, Russian Math. Surveys, 18 (1963), 9.
|
[3] |
I. Baldomá, The inner equation for one and a half degrees of freedom rapidly forced Hamiltonian systems,, Nonlinearity, 19 (2006), 1415.
doi: 10.1088/0951-7715/19/6/011. |
[4] |
I. Baldomá and E. Fontich, Exponentially small splitting of invariant manifolds of parabolic points,, Mem. Amer. Math. Soc., 167 (2004).
|
[5] |
I. Baldomá and E. Fontich, Exponentially small splitting of separatrices in a weakly hyperbolic case,, J. Differential Equations, 210 (2005), 106.
doi: 10.1016/j.jde.2004.10.017. |
[6] |
I. Baldomá, E. Fontich, M. Guàrdia and T. M. Seara, Exponentially small splitting of separatrices beyond melnikov analysis: Rigorous results,, preprint, (2011).
doi: 10.1016/j.jde.2012.09.003. |
[7] |
L. Chierchia and G. Gallavotti, Drift and diffusion in phase space,, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994).
|
[8] |
A. Delshams, V. Gelfreich, À. Jorba and T. M. Seara, Exponentially small splitting of separatrices under fast quasiperiodic forcing,, Comm. Math. Phys., 189 (1997), 35.
doi: 10.1007/s002200050190. |
[9] |
A. Delshams, P. Gutiérrez and T. M. Seara, Exponentially small splitting for whiskered tori in Hamiltonian sysems: Flow-box coordinates and upper bounds,, Discrete Contin. Dyn. Syst., 11 (2004), 785.
doi: 10.3934/dcds.2004.11.785. |
[10] |
A. Delshams and T. M. Seara, An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum,, Comm. Math. Phys., 150 (1992), 433.
|
[11] |
A. Delshams and T. M. Seara, Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom,, Math. Phys. Electron. J., 3 (1997).
|
[12] |
E. Fontich, Exponentially small upper bounds for the splitting of separatrices for high frequency periodic perturbations,, Nonlinear Anal., 20 (1993), 733.
doi: 10.1016/0362-546X(93)90031-M. |
[13] |
E. Fontich, Rapidly forced planar vector fields and splitting of separatrices,, J. Differential Equations, 119 (1995), 310.
doi: 10.1006/jdeq.1995.1093. |
[14] |
V. G. Gelfreich, Separatrices splitting for the rapidly forced pendulum,, in, 12 (1994), 47.
|
[15] |
V. G. Gelfreich, Melnikov method and exponentially small splitting of separatrices,, Phys. D, 101 (1997), 227.
doi: 10.1016/S0167-2789(96)00133-9. |
[16] |
V. G. Gelfreich, Reference systems for splittings of separatrices,, Nonlinearity, 10 (1997), 175.
doi: 10.1088/0951-7715/10/1/012. |
[17] |
V. G. Gelfreich, Separatrix splitting for a high-frequency perturbation of the pendulum,, Russ. J. Math. Phys., 7 (2000), 48.
|
[18] |
G. Gallavotti, G. Gentile and V. Mastropietro, Separatrix splitting for systems with three time scales,, Comm. Math. Phys., 202 (1999), 197.
doi: 10.1007/s002200050579. |
[19] |
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer-Verlag, (1983).
|
[20] |
M. Guardia, C. Olivé and T. Seara, Exponentially small splitting for the pendulum: A classical problem revisited,, J. Nonlinear Sci., 20 (2010), 595.
doi: 10.1007/s00332-010-9068-8. |
[21] |
M. Guardia and T. M. Seara, Exponentially and non-exponentially small splitting of separatrices for the pendulum with a fast meromorphic perturbation,, Nonlinearity, 25 (2012), 1367.
doi: 10.1088/0951-7715/25/5/1367. |
[22] |
P. Holmes, J. Marsden and J. Scheurle, Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations,, in, 81 (1988).
doi: 10.1090/conm/081/986267. |
[23] |
A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function,, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527.
|
[24] |
P. Lochak, J.-P. Marco and D. Sauzin, On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems,, Mem. Amer. Math. Soc., 163 (2003).
|
[25] |
V. K. Melnikov, On the stability of the center for time periodic perturbations,, Trans. Moscow Math. Soc., 12 (1963), 1.
|
[26] |
J. Moser, On invariant curves of area-preserving mappings of an annulus,, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, (1962), 1.
|
[27] |
A. I. Neĭshtadt, The separation of motions in systems with rapidly rotating phase,, Prikl. Mat. Mekh., 48 (1984), 197.
doi: 10.1016/0021-8928(84)90078-9. |
[28] |
C. Olivé, "Càlcul de L'escissió de Separatrius Usant Tècniques de Matching Complex I Ressurgència Aplicades a L'equació de Hamilton-Jacobi,", Ph.D thesis, (2006). Google Scholar |
[29] |
C. Olivé, D. Sauzin and T. M. Seara, Resurgence in a Hamilton-Jacobi equation,, in, 53 (2003), 1185.
|
[30] |
H. Poincaré, Sur le problème des trois corps et les équations de la dynamique,, Acta Mathematica, 13 (1890), 1. Google Scholar |
[31] |
D. Sauzin, Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé,, Ann. Ins. Fourier, 45 (1995), 453.
|
[32] |
D. Sauzin, A new method for measuring the splitting of invariant manifolds,, Ann. Sci. École Norm. Sup., 34 (2001), 159.
doi: 10.1016/S0012-9593(00)01063-6. |
[33] |
S. Smale, Diffeomorphisms with many periodic points,, in, (1965), 63.
|
[34] |
J. Scheurle, J. E. Marsden and P. Holmes, Exponentially small estimates for separatrix splittings,, in, 284 (1991), 187.
|
[35] |
C. Simó and A. Vieiro, Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps,, Nonlinearity, 22 (2009), 1191.
doi: 10.1088/0951-7715/22/5/012. |
[36] |
D. Treschev, Separatrix splitting for a pendulum with rapidly oscillating suspension point,, Russ. J. Math. Phys., 5 (1997), 63.
|
show all references
References:
[1] |
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, "Dynamical Systems III,", 3 of Encyclopaedia Math. Sci., 3 (1988).
|
[2] |
V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations,, Russian Math. Surveys, 18 (1963), 9.
|
[3] |
I. Baldomá, The inner equation for one and a half degrees of freedom rapidly forced Hamiltonian systems,, Nonlinearity, 19 (2006), 1415.
doi: 10.1088/0951-7715/19/6/011. |
[4] |
I. Baldomá and E. Fontich, Exponentially small splitting of invariant manifolds of parabolic points,, Mem. Amer. Math. Soc., 167 (2004).
|
[5] |
I. Baldomá and E. Fontich, Exponentially small splitting of separatrices in a weakly hyperbolic case,, J. Differential Equations, 210 (2005), 106.
doi: 10.1016/j.jde.2004.10.017. |
[6] |
I. Baldomá, E. Fontich, M. Guàrdia and T. M. Seara, Exponentially small splitting of separatrices beyond melnikov analysis: Rigorous results,, preprint, (2011).
doi: 10.1016/j.jde.2012.09.003. |
[7] |
L. Chierchia and G. Gallavotti, Drift and diffusion in phase space,, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994).
|
[8] |
A. Delshams, V. Gelfreich, À. Jorba and T. M. Seara, Exponentially small splitting of separatrices under fast quasiperiodic forcing,, Comm. Math. Phys., 189 (1997), 35.
doi: 10.1007/s002200050190. |
[9] |
A. Delshams, P. Gutiérrez and T. M. Seara, Exponentially small splitting for whiskered tori in Hamiltonian sysems: Flow-box coordinates and upper bounds,, Discrete Contin. Dyn. Syst., 11 (2004), 785.
doi: 10.3934/dcds.2004.11.785. |
[10] |
A. Delshams and T. M. Seara, An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum,, Comm. Math. Phys., 150 (1992), 433.
|
[11] |
A. Delshams and T. M. Seara, Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom,, Math. Phys. Electron. J., 3 (1997).
|
[12] |
E. Fontich, Exponentially small upper bounds for the splitting of separatrices for high frequency periodic perturbations,, Nonlinear Anal., 20 (1993), 733.
doi: 10.1016/0362-546X(93)90031-M. |
[13] |
E. Fontich, Rapidly forced planar vector fields and splitting of separatrices,, J. Differential Equations, 119 (1995), 310.
doi: 10.1006/jdeq.1995.1093. |
[14] |
V. G. Gelfreich, Separatrices splitting for the rapidly forced pendulum,, in, 12 (1994), 47.
|
[15] |
V. G. Gelfreich, Melnikov method and exponentially small splitting of separatrices,, Phys. D, 101 (1997), 227.
doi: 10.1016/S0167-2789(96)00133-9. |
[16] |
V. G. Gelfreich, Reference systems for splittings of separatrices,, Nonlinearity, 10 (1997), 175.
doi: 10.1088/0951-7715/10/1/012. |
[17] |
V. G. Gelfreich, Separatrix splitting for a high-frequency perturbation of the pendulum,, Russ. J. Math. Phys., 7 (2000), 48.
|
[18] |
G. Gallavotti, G. Gentile and V. Mastropietro, Separatrix splitting for systems with three time scales,, Comm. Math. Phys., 202 (1999), 197.
doi: 10.1007/s002200050579. |
[19] |
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer-Verlag, (1983).
|
[20] |
M. Guardia, C. Olivé and T. Seara, Exponentially small splitting for the pendulum: A classical problem revisited,, J. Nonlinear Sci., 20 (2010), 595.
doi: 10.1007/s00332-010-9068-8. |
[21] |
M. Guardia and T. M. Seara, Exponentially and non-exponentially small splitting of separatrices for the pendulum with a fast meromorphic perturbation,, Nonlinearity, 25 (2012), 1367.
doi: 10.1088/0951-7715/25/5/1367. |
[22] |
P. Holmes, J. Marsden and J. Scheurle, Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations,, in, 81 (1988).
doi: 10.1090/conm/081/986267. |
[23] |
A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function,, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527.
|
[24] |
P. Lochak, J.-P. Marco and D. Sauzin, On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems,, Mem. Amer. Math. Soc., 163 (2003).
|
[25] |
V. K. Melnikov, On the stability of the center for time periodic perturbations,, Trans. Moscow Math. Soc., 12 (1963), 1.
|
[26] |
J. Moser, On invariant curves of area-preserving mappings of an annulus,, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, (1962), 1.
|
[27] |
A. I. Neĭshtadt, The separation of motions in systems with rapidly rotating phase,, Prikl. Mat. Mekh., 48 (1984), 197.
doi: 10.1016/0021-8928(84)90078-9. |
[28] |
C. Olivé, "Càlcul de L'escissió de Separatrius Usant Tècniques de Matching Complex I Ressurgència Aplicades a L'equació de Hamilton-Jacobi,", Ph.D thesis, (2006). Google Scholar |
[29] |
C. Olivé, D. Sauzin and T. M. Seara, Resurgence in a Hamilton-Jacobi equation,, in, 53 (2003), 1185.
|
[30] |
H. Poincaré, Sur le problème des trois corps et les équations de la dynamique,, Acta Mathematica, 13 (1890), 1. Google Scholar |
[31] |
D. Sauzin, Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé,, Ann. Ins. Fourier, 45 (1995), 453.
|
[32] |
D. Sauzin, A new method for measuring the splitting of invariant manifolds,, Ann. Sci. École Norm. Sup., 34 (2001), 159.
doi: 10.1016/S0012-9593(00)01063-6. |
[33] |
S. Smale, Diffeomorphisms with many periodic points,, in, (1965), 63.
|
[34] |
J. Scheurle, J. E. Marsden and P. Holmes, Exponentially small estimates for separatrix splittings,, in, 284 (1991), 187.
|
[35] |
C. Simó and A. Vieiro, Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps,, Nonlinearity, 22 (2009), 1191.
doi: 10.1088/0951-7715/22/5/012. |
[36] |
D. Treschev, Separatrix splitting for a pendulum with rapidly oscillating suspension point,, Russ. J. Math. Phys., 5 (1997), 63.
|
[1] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[2] |
Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001 |
[3] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[4] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[5] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2021001 |
[6] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[7] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[8] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[9] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[10] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[11] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[12] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[13] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[14] |
Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 |
[15] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[16] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
[17] |
Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117 |
[18] |
Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021005 |
[19] |
Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020121 |
[20] |
Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]