2012, 4(4): 365-383. doi: 10.3934/jgm.2012.4.365

Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics

1. 

Fakultät f¨ur Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria

2. 

EdLabs, Harvard University, 44 Brattle Street, Cambridge, MA 02138

Received  September 2011 Revised  May 2012 Published  January 2013

In continuation of [7] we discuss metrics of the form $$ G^P_f(h,k)=\int_M \sum_{i=0}^p\Phi_i\big(Vol(f)\big)\ \bar{g}\big((P_i)_fh,k\big) vol(f^*\bar{g}) $$ on the space of immersions $Imm(M,N)$ and on shape space $B_i(M,N)=Imm(M,N)/{Diff}(M)$. Here $(N,\bar{g})$ is a complete Riemannian manifold, $M$ is a compact manifold, $f:M\to N$ is an immersion, $h$ and $k$ are tangent vectors to $f$ in the space of immersions, $f^*\bar{g}$ is the induced Riemannian metric on $M$, $vol(f^*\bar{g})$ is the induced volume density on $M$, $Vol(f)=\int_M vol(f^*\bar{g})$, $\Phi_i$ are positive real-valued functions, and $(P_i)_f$ are operators like some power of the Laplacian $\Delta^{f^*\bar{g}}$. We derive the geodesic equations for these metrics and show that they are sometimes well-posed with the geodesic exponential mapping a local diffeomorphism. The new aspect here are the weights $\Phi_i(Vol(f))$ which we use to construct scale invariant metrics and order 0 metrics with positive geodesic distance. We treat several concrete special cases in detail.
Citation: Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics. Journal of Geometric Mechanics, 2012, 4 (4) : 365-383. doi: 10.3934/jgm.2012.4.365
References:
[1]

M. Bauer and M. Bruveris, A new Riemannian setting for surface registration,, 3nd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, (2011), 182.

[2]

M. Bauer, M. Bruveris, C. Cotter, S. Marsland and P. W. Michor, Constructing reparametrization invariant metrics on spaces of plane curves,, \arXiv{1207.5965}., ().

[3]

M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Vanishing geodesic distance for the riemannian metric with geodesic equation the KdV-equation,, Ann. Global Analysis Geom., 41 (2012), 461. doi: 10.1007/s10455-011-9294-9.

[4]

M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group,, Ann. Glob. Anal. Geom., (). doi: doi:10.1007/s10455-012-9353-x.

[5]

M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, SIAM J. Imaging Sci., 5 (2012), 244. doi: 10.1137/100807983.

[6]

M. Bauer, P. Harms and P. W. Michor, Curvature weighted metrics on shape space of hypersurfaces in n-space,, Differential Geometry and its Applications, 30 (2012), 33. doi: 10.1016/j.difgeo.2011.10.002.

[7]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space of surfaces,, Journal of Geometric Mechanics, 3 (2011), 389.

[8]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on the manifold of all Riemannian metrics,, To appear in, ().

[9]

M. Bauer, "Almost Local Metrics on Shape Space of Surfaces,", Ph.D thesis, (2010).

[10]

A. L. Besse, "Einstein Manifolds,", Classics in Mathematics. Springer-Verlag, (2008).

[11]

P. Harms, "Sobolev Metrics on Shape Space of Surfaces,", Ph.D Thesis, (2010).

[12]

P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217.

[13]

P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc. (JEMS), 8 (2006), 1. doi: 10.4171/JEMS/37.

[14]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74. doi: 10.1016/j.acha.2006.07.004.

[15]

J. Peetre, Une caractérisation abstraite des opérateurs différentiels,, Math. Scand., 7 (1959), 211.

[16]

J. Peetre, Réctification à l'article "Une caractérisation abstraite des opérateurs différentiels",, Math. Scand., 8 (1960), 116.

[17]

J. Shah, $H^0$-type Riemannian metrics on the space of planar curves,, Quart. Appl. Math., 66 (2008), 123.

[18]

M. A. Shubin, "Pseudodifferential Operators and Spectral Theory,", Springer Series in Soviet Mathematics. Springer-Verlag, (1987). doi: 10.1007/978-3-642-96854-9.

[19]

Jan Slovák, Peetre theorem for nonlinear operators,, Ann. Global Anal. Geom., 6 (1988), 273. doi: 10.1007/BF00054575.

[20]

A. Yezzi and A. Mennucci, Conformal riemannian metrics in space of curves,, EUSIPCO, (2004).

[21]

A. Yezzi and A. Mennucci, Metrics in the space of curves,, \arXiv{math/0412454}, (2004).

[22]

A. Yezzi and A. Mennucci, Conformal metrics and true "gradient flows" for curves,, in, 1 (2005), 913.

[23]

L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics,, Rend. Lincei Mat. Appl., 9 (2008), 25. doi: 10.4171/RLM/506.

show all references

References:
[1]

M. Bauer and M. Bruveris, A new Riemannian setting for surface registration,, 3nd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, (2011), 182.

[2]

M. Bauer, M. Bruveris, C. Cotter, S. Marsland and P. W. Michor, Constructing reparametrization invariant metrics on spaces of plane curves,, \arXiv{1207.5965}., ().

[3]

M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Vanishing geodesic distance for the riemannian metric with geodesic equation the KdV-equation,, Ann. Global Analysis Geom., 41 (2012), 461. doi: 10.1007/s10455-011-9294-9.

[4]

M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group,, Ann. Glob. Anal. Geom., (). doi: doi:10.1007/s10455-012-9353-x.

[5]

M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, SIAM J. Imaging Sci., 5 (2012), 244. doi: 10.1137/100807983.

[6]

M. Bauer, P. Harms and P. W. Michor, Curvature weighted metrics on shape space of hypersurfaces in n-space,, Differential Geometry and its Applications, 30 (2012), 33. doi: 10.1016/j.difgeo.2011.10.002.

[7]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space of surfaces,, Journal of Geometric Mechanics, 3 (2011), 389.

[8]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on the manifold of all Riemannian metrics,, To appear in, ().

[9]

M. Bauer, "Almost Local Metrics on Shape Space of Surfaces,", Ph.D thesis, (2010).

[10]

A. L. Besse, "Einstein Manifolds,", Classics in Mathematics. Springer-Verlag, (2008).

[11]

P. Harms, "Sobolev Metrics on Shape Space of Surfaces,", Ph.D Thesis, (2010).

[12]

P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217.

[13]

P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc. (JEMS), 8 (2006), 1. doi: 10.4171/JEMS/37.

[14]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74. doi: 10.1016/j.acha.2006.07.004.

[15]

J. Peetre, Une caractérisation abstraite des opérateurs différentiels,, Math. Scand., 7 (1959), 211.

[16]

J. Peetre, Réctification à l'article "Une caractérisation abstraite des opérateurs différentiels",, Math. Scand., 8 (1960), 116.

[17]

J. Shah, $H^0$-type Riemannian metrics on the space of planar curves,, Quart. Appl. Math., 66 (2008), 123.

[18]

M. A. Shubin, "Pseudodifferential Operators and Spectral Theory,", Springer Series in Soviet Mathematics. Springer-Verlag, (1987). doi: 10.1007/978-3-642-96854-9.

[19]

Jan Slovák, Peetre theorem for nonlinear operators,, Ann. Global Anal. Geom., 6 (1988), 273. doi: 10.1007/BF00054575.

[20]

A. Yezzi and A. Mennucci, Conformal riemannian metrics in space of curves,, EUSIPCO, (2004).

[21]

A. Yezzi and A. Mennucci, Metrics in the space of curves,, \arXiv{math/0412454}, (2004).

[22]

A. Yezzi and A. Mennucci, Conformal metrics and true "gradient flows" for curves,, in, 1 (2005), 913.

[23]

L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics,, Rend. Lincei Mat. Appl., 9 (2008), 25. doi: 10.4171/RLM/506.

[1]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

[2]

Alexander V. Rezounenko, Petr Zagalak. Non-local PDEs with discrete state-dependent delays: Well-posedness in a metric space. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 819-835. doi: 10.3934/dcds.2013.33.819

[3]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[4]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[5]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[6]

Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072

[7]

P. Blue, J. Colliander. Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS. Communications on Pure & Applied Analysis, 2006, 5 (4) : 691-708. doi: 10.3934/cpaa.2006.5.691

[8]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[9]

Hartmut Pecher. Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions". Communications on Pure & Applied Analysis, 2015, 14 (2) : 737-742. doi: 10.3934/cpaa.2015.14.737

[10]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[11]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[12]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

[13]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[14]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[15]

Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811

[16]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[17]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389

[18]

Daniel Coutand, Steve Shkoller. A simple proof of well-posedness for the free-surface incompressible Euler equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 429-449. doi: 10.3934/dcdss.2010.3.429

[19]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[20]

Yoshihiro Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evolution Equations & Control Theory, 2018, 7 (1) : 117-152. doi: 10.3934/eect.2018007

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]