
Previous Article
A mathematical model for the immunotherapeutic control of the Th1/Th2 imbalance in melanoma
 DCDSB Home
 This Issue

Next Article
B cell chronic lymphocytic leukemia  A model with immune response
Optimal controls for a mathematical model of tumorimmune interactions under targeted chemotherapy with immune boost
1.  Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 620261653, United States 
2.  Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 631304899 
References:
[1] 
D. J. Bell and D. H. Jacobson, "Singular Optimal Control Problems,", Academic Press, (1975). 
[2] 
D. A. Benson, "A Gauss Pseudospectral Transcription for Optimal Control,", Ph.D. thesis, (2004). 
[3] 
D. A. Benson, G. T. Huntington, T. P. Thorvaldsen and A. V. Rao, Direct trajectory optimization and costate estimation via an orthogonal collocation method,, J. of Guidance, 29 (2006), 1435. 
[4] 
B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory,", Springer Verlag, (2003). 
[5] 
A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", American Institute of Mathematical Sciences, (2007). 
[6] 
T. Burden, J. Ernstberger and K. R. Fister, Optimal control applied to immunotherapy, Discrete and Continuous Dynamical Systems  Series B, 4 (2004), 135. 
[7] 
F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotherapy,, Bulletin of Mathematical Biology, 68 (2006), 255. doi: 10.1007/s1153800590143. 
[8] 
M. Eisen, "Mathematical Models in Cell Biology and Cancer Chemotherapy,", Lecture Notes in Biomathematics, 30 (1979). 
[9] 
A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors,, Bulletin of Mathematical Biology, 65 (2003), 407. 
[10] 
K. R. Fister and J. Hughes Donnelly, Immunotherapy: an optimal control approach,, Mathematical Biosciences and Engineering (MBE), 2 (2005), 499. doi: 10.3934/mbe.2005.2.499. 
[11] 
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer Verlag, (1983). 
[12] 
G. T. Huntington, "Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control,", Ph.D. thesis, (2007). 
[13] 
D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumorimmune interaction,, J. of Mathematical Biology, 37 (1998), 235. 
[14] 
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis,, Bull. Mathematical Biology, 56 (1994), 295. 
[15] 
U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for antiangiogenic treatment,, Math. Medicine and Biology, 27 (2010), 157. doi: 10.1093/imammb/dqp012. 
[16] 
U. Ledzewicz, H. Maurer and H. Schättler, Bangbang and singular controls in a mathematical model for combined antiangiogenic and chemotherapy treatments,, Proc. 48th IEEE Conf. on Dec. and Contr., (2009), 2280. 
[17] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, An optimal control approach to cancer treatment under immunological activity,, Applicationes Mathematicae, 38 (2011), 17. doi: 10.4064/am3812. 
[18] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Bifurcation of singular arcs in an optimal control problem for cancer immune system interactions under treatment,, Proceedings of the 49th IEEE Conf. on Decision and Control, (2010), 7039. 
[19] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Dynamics of tumorimmune interactions under treatment as an optimal control problem,, Proc. of the 8th AIMS Conf., (2010), 971. 
[20] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Optimal response to chemotherapy for a mathematical model of tumorimmune dynamics,, J. of Mathematical Biology, 64 (2012), 557. doi: 10.1007/s0028501104246. 
[21] 
U. Ledzewicz and H. Schättler, Analysis of a cellcycle specific model for cancer chemotherapy,, J. of Biological Systems, 10 (2002), 183. 
[22] 
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem,, SIAM J. Control and Optimization, 46 (2007), 1052. doi: 10.1137/060665294. 
[23] 
U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor antiangiogenesis,, J. of Theoretical Biology, 252 (2008), 295. 
[24] 
L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy,, J. of the National Cancer Institute, 58 (1977), 1735. 
[25] 
L. Norton, A Gompertzian model of human breast cancer growth,, Cancer Research, 48 (1988), 7067. 
[26] 
A. d'Onofrio, A general framework for modeling tumorimmune system competition and immunotherapy: mathematical analysis and biomedical inferences,, Physica D, 208 (2005), 220. doi: 10.1016/j.physd.2005.06.032. 
[27] 
A. d'Onofrio, Tumorimmune system interaction: modeling the tumorstimulated proliferation of effectors and immunotherapy,, Math. Models and Methods in Applied Sciences, 16 (2006), 1375. doi: 10.1142/S0218202506001571. 
[28] 
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On Optimal Delivery of Combination Therapy for Tumors,, Mathematical Biosciences, 222 (2009), 13. doi: 10.1016/j.mbs.2009.08.004. 
[29] 
L. G. de Pillis and A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach,, J. of Theoretical Medicine, 3 (2001), 79. 
[30] 
A. V. Rao, D. A. Benson, G. T. Huntington, C. Francolin, C. L. Darby and M. A. Patterson, "User's Manual for GPOPS: A MATLAB Package for Dynamic Optimization Using the Gauss Pseudospectral Method,", University of Florida Report, (2008). 
[31] 
H. Schättler and U. Ledzewicz, "Geometric Optimal Control: Theory, Methods and Examples,", Springer Verlag, (2012). doi: 10.1007/9781461438342. 
[32] 
N.V. Stepanova, Course of the immune reaction during the development of a malignant tumour,, Biophysics, 24 (1980), 917. 
[33] 
G. W. Swan, Role of optimal control in cancer chemotherapy,, Mathematical Biosciences, 101 (1990), 237. 
[34] 
A. Swierniak, Optimal treatment protocols in leukemia  modelling the proliferation cycle,, Proceedings of the 12th IMACS World Congress, 4 (1988), 170. 
[35] 
A. Swierniak, Cell cycle as an object of control,, J. of Biological Systems, 3 (1995), 41. 
[36] 
A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy,, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357. 
[37] 
H. P. de Vladar and J. A. González, Dynamic response of cancer under the influence of immunological activity and therapy,, J. of Theoretical Biology, 227 (2004), 335. doi: 10.1016/j.jtbi.2003.11.012. 
show all references
References:
[1] 
D. J. Bell and D. H. Jacobson, "Singular Optimal Control Problems,", Academic Press, (1975). 
[2] 
D. A. Benson, "A Gauss Pseudospectral Transcription for Optimal Control,", Ph.D. thesis, (2004). 
[3] 
D. A. Benson, G. T. Huntington, T. P. Thorvaldsen and A. V. Rao, Direct trajectory optimization and costate estimation via an orthogonal collocation method,, J. of Guidance, 29 (2006), 1435. 
[4] 
B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory,", Springer Verlag, (2003). 
[5] 
A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", American Institute of Mathematical Sciences, (2007). 
[6] 
T. Burden, J. Ernstberger and K. R. Fister, Optimal control applied to immunotherapy, Discrete and Continuous Dynamical Systems  Series B, 4 (2004), 135. 
[7] 
F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotherapy,, Bulletin of Mathematical Biology, 68 (2006), 255. doi: 10.1007/s1153800590143. 
[8] 
M. Eisen, "Mathematical Models in Cell Biology and Cancer Chemotherapy,", Lecture Notes in Biomathematics, 30 (1979). 
[9] 
A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors,, Bulletin of Mathematical Biology, 65 (2003), 407. 
[10] 
K. R. Fister and J. Hughes Donnelly, Immunotherapy: an optimal control approach,, Mathematical Biosciences and Engineering (MBE), 2 (2005), 499. doi: 10.3934/mbe.2005.2.499. 
[11] 
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer Verlag, (1983). 
[12] 
G. T. Huntington, "Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control,", Ph.D. thesis, (2007). 
[13] 
D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumorimmune interaction,, J. of Mathematical Biology, 37 (1998), 235. 
[14] 
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis,, Bull. Mathematical Biology, 56 (1994), 295. 
[15] 
U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for antiangiogenic treatment,, Math. Medicine and Biology, 27 (2010), 157. doi: 10.1093/imammb/dqp012. 
[16] 
U. Ledzewicz, H. Maurer and H. Schättler, Bangbang and singular controls in a mathematical model for combined antiangiogenic and chemotherapy treatments,, Proc. 48th IEEE Conf. on Dec. and Contr., (2009), 2280. 
[17] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, An optimal control approach to cancer treatment under immunological activity,, Applicationes Mathematicae, 38 (2011), 17. doi: 10.4064/am3812. 
[18] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Bifurcation of singular arcs in an optimal control problem for cancer immune system interactions under treatment,, Proceedings of the 49th IEEE Conf. on Decision and Control, (2010), 7039. 
[19] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Dynamics of tumorimmune interactions under treatment as an optimal control problem,, Proc. of the 8th AIMS Conf., (2010), 971. 
[20] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Optimal response to chemotherapy for a mathematical model of tumorimmune dynamics,, J. of Mathematical Biology, 64 (2012), 557. doi: 10.1007/s0028501104246. 
[21] 
U. Ledzewicz and H. Schättler, Analysis of a cellcycle specific model for cancer chemotherapy,, J. of Biological Systems, 10 (2002), 183. 
[22] 
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem,, SIAM J. Control and Optimization, 46 (2007), 1052. doi: 10.1137/060665294. 
[23] 
U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor antiangiogenesis,, J. of Theoretical Biology, 252 (2008), 295. 
[24] 
L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy,, J. of the National Cancer Institute, 58 (1977), 1735. 
[25] 
L. Norton, A Gompertzian model of human breast cancer growth,, Cancer Research, 48 (1988), 7067. 
[26] 
A. d'Onofrio, A general framework for modeling tumorimmune system competition and immunotherapy: mathematical analysis and biomedical inferences,, Physica D, 208 (2005), 220. doi: 10.1016/j.physd.2005.06.032. 
[27] 
A. d'Onofrio, Tumorimmune system interaction: modeling the tumorstimulated proliferation of effectors and immunotherapy,, Math. Models and Methods in Applied Sciences, 16 (2006), 1375. doi: 10.1142/S0218202506001571. 
[28] 
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On Optimal Delivery of Combination Therapy for Tumors,, Mathematical Biosciences, 222 (2009), 13. doi: 10.1016/j.mbs.2009.08.004. 
[29] 
L. G. de Pillis and A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach,, J. of Theoretical Medicine, 3 (2001), 79. 
[30] 
A. V. Rao, D. A. Benson, G. T. Huntington, C. Francolin, C. L. Darby and M. A. Patterson, "User's Manual for GPOPS: A MATLAB Package for Dynamic Optimization Using the Gauss Pseudospectral Method,", University of Florida Report, (2008). 
[31] 
H. Schättler and U. Ledzewicz, "Geometric Optimal Control: Theory, Methods and Examples,", Springer Verlag, (2012). doi: 10.1007/9781461438342. 
[32] 
N.V. Stepanova, Course of the immune reaction during the development of a malignant tumour,, Biophysics, 24 (1980), 917. 
[33] 
G. W. Swan, Role of optimal control in cancer chemotherapy,, Mathematical Biosciences, 101 (1990), 237. 
[34] 
A. Swierniak, Optimal treatment protocols in leukemia  modelling the proliferation cycle,, Proceedings of the 12th IMACS World Congress, 4 (1988), 170. 
[35] 
A. Swierniak, Cell cycle as an object of control,, J. of Biological Systems, 3 (1995), 41. 
[36] 
A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy,, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357. 
[37] 
H. P. de Vladar and J. A. González, Dynamic response of cancer under the influence of immunological activity and therapy,, J. of Theoretical Biology, 227 (2004), 335. doi: 10.1016/j.jtbi.2003.11.012. 
[1] 
Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler. On optimal chemotherapy with a strongly targeted agent for a model of tumorimmune system interactions with generalized logistic growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 787802. doi: 10.3934/mbe.2013.10.787 
[2] 
Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumorimmune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971980. doi: 10.3934/proc.2011.2011.971 
[3] 
Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 12231240. doi: 10.3934/mbe.2016040 
[4] 
Dan Liu, Shigui Ruan, Deming Zhu. Bifurcation analysis in models of tumor and immune system interactions. Discrete & Continuous Dynamical Systems  B, 2009, 12 (1) : 151168. doi: 10.3934/dcdsb.2009.12.151 
[5] 
J.C. Arciero, T.L. Jackson, D.E. Kirschner. A mathematical model of tumorimmune evasion and siRNA treatment. Discrete & Continuous Dynamical Systems  B, 2004, 4 (1) : 3958. doi: 10.3934/dcdsb.2004.4.39 
[6] 
Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae. T model of growth and its application in systems of tumorimmune dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 925938. doi: 10.3934/mbe.2013.10.925 
[7] 
Giulio Caravagna, Alex Graudenzi, Alberto d’Onofrio. Distributed delays in a hybrid model of tumorImmune system interplay. Mathematical Biosciences & Engineering, 2013, 10 (1) : 3757. doi: 10.3934/mbe.2013.10.37 
[8] 
Martina Conte, Maria Groppi, Giampiero Spiga. Qualitative analysis of kineticbased models for tumorimmune system interaction. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 122. doi: 10.3934/dcdsb.2018060 
[9] 
Wei Feng, Shuhua Hu, Xin Lu. Optimal controls for a 3compartment model for cancer chemotherapy with quadratic objective. Conference Publications, 2003, 2003 (Special) : 544553. doi: 10.3934/proc.2003.2003.544 
[10] 
Urszula Ledzewicz, Heinz Schättler. The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 561578. doi: 10.3934/mbe.2005.2.561 
[11] 
Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems  B, 2006, 6 (1) : 129150. doi: 10.3934/dcdsb.2006.6.129 
[12] 
Craig Collins, K. Renee Fister, Bethany Key, Mary Williams. Blasting neuroblastoma using optimal control of chemotherapy. Mathematical Biosciences & Engineering, 2009, 6 (3) : 451467. doi: 10.3934/mbe.2009.6.451 
[13] 
Urszula Ledzewicz, Heinz Schättler. On the optimality of singular controls for a class of mathematical models for tumor antiangiogenesis. Discrete & Continuous Dynamical Systems  B, 2009, 11 (3) : 691715. doi: 10.3934/dcdsb.2009.11.691 
[14] 
Dan Liu, Shigui Ruan, Deming Zhu. Stable periodic oscillations in a twostage cancer model of tumor and immune system interactions. Mathematical Biosciences & Engineering, 2012, 9 (2) : 347368. doi: 10.3934/mbe.2012.9.347 
[15] 
Heinz Schättler, Urszula Ledzewicz, Benjamin Cardwell. Robustness of optimal controls for a class of mathematical models for tumor antiangiogenesis. Mathematical Biosciences & Engineering, 2011, 8 (2) : 355369. doi: 10.3934/mbe.2011.8.355 
[16] 
Baltazar D. Aguda, Ricardo C.H. del Rosario, Michael W.Y. Chan. Oncogenetumor suppressor gene feedback interactions and their control. Mathematical Biosciences & Engineering, 2015, 12 (6) : 12771288. doi: 10.3934/mbe.2015.12.1277 
[17] 
Luis A. Fernández, Cecilia Pola. Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint. Discrete & Continuous Dynamical Systems  B, 2014, 19 (6) : 15631588. doi: 10.3934/dcdsb.2014.19.1563 
[18] 
Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi. On the MTD paradigm and optimal control for multidrug cancer chemotherapy. Mathematical Biosciences & Engineering, 2013, 10 (3) : 803819. doi: 10.3934/mbe.2013.10.803 
[19] 
Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217235. doi: 10.3934/mbe.2017014 
[20] 
Urszula Ledzewicz, Helmut Maurer, Heinz Schättler. Optimal and suboptimal protocols for a mathematical model for tumor antiangiogenesis in combination with chemotherapy. Mathematical Biosciences & Engineering, 2011, 8 (2) : 307323. doi: 10.3934/mbe.2011.8.307 
2016 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]