2013, 6(2): 219-243. doi: 10.3934/krm.2013.6.219

Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

2. 

School of Mathematics, Watson Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

3. 

Laboratoire de Mathématiques de Versailles, CNRS UMR 8100, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue de États-Unis, 78035 Versailles cedex, France

Received  October 2012 Revised  November 2012 Published  February 2013

We are concerned with the long-time behavior of the growth-frag-mentation equation. We prove fine estimates on the principal eigenfunctions of the growth-fragmentation operator, giving their first-order behavior close to $0$ and $+\infty$. Using these estimates we prove a spectral gap result by following the technique in [1], which implies that solutions decay to the equilibrium exponentially fast. The growth and fragmentation coefficients we consider are quite general, essentially only assumed to behave asymptotically like power laws.
Citation: Daniel Balagué, José A. Cañizo, Pierre Gabriel. Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates. Kinetic & Related Models, 2013, 6 (2) : 219-243. doi: 10.3934/krm.2013.6.219
References:
[1]

M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations,, J. Math. Pures Appl. (9), 96 (2011), 334. doi: 10.1016/j.matpur.2011.01.003.

[2]

M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model,, Math. Models Methods Appl. Sci., 20 (2010), 757. doi: 10.1142/S021820251000443X.

[3]

M. Escobedo, S. Mischler and M. Rodríguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99. doi: 10.1016/j.anihpc.2004.06.001.

[4]

P. Gabriel, "Équations de Transport-Fragmentation et Applications aux Maladies à Prions [Transport-Fragmentation Equations and Applications to Prion Diseases],", Ph.D thesis, (2011).

[5]

P. Laurençot and B. Perthame, Exponential decay for the growth-fragmentation/cell-division equation,, Comm. Math. Sci., 7 (2009), 503.

[6]

J. A. J. Metz and O. Diekmann, eds., "The Dynamics of Physiologically Structured Populations,", Lecture notes in Biomathematics, 68 (1986).

[7]

P. Michel, Existence of a solution to the cell division eigenproblem,, Math. Models Methods Appl. Sci., 16 (2006), 1125. doi: 10.1142/S0218202506001480.

[8]

P. Michel, S. Mischler and B. Perthame, General entropy equations for structured population models and scattering,, C. R. Math. Acad. Sci. Paris, 338 (2004), 697. doi: 10.1016/j.crma.2004.03.006.

[9]

P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models,, J. Math. Pures Appl. (9), 84 (2005), 1235. doi: 10.1016/j.matpur.2005.04.001.

[10]

B. Perthame, "Transport Equations in Biology,", Frontiers in Mathematics, (2007).

[11]

B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation,, J. Differential Equations, 210 (2005), 155. doi: 10.1016/j.jde.2004.10.018.

[12]

B. Perthame and D. Salort, Distributed elapsed time model for neuron networks,, in preparation., ().

[13]

R. Wong, "Asymptotic Approximation of Integrals,", Corrected reprint of the 1989 original, 34 (1989). doi: 10.1137/1.9780898719260.

show all references

References:
[1]

M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations,, J. Math. Pures Appl. (9), 96 (2011), 334. doi: 10.1016/j.matpur.2011.01.003.

[2]

M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model,, Math. Models Methods Appl. Sci., 20 (2010), 757. doi: 10.1142/S021820251000443X.

[3]

M. Escobedo, S. Mischler and M. Rodríguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99. doi: 10.1016/j.anihpc.2004.06.001.

[4]

P. Gabriel, "Équations de Transport-Fragmentation et Applications aux Maladies à Prions [Transport-Fragmentation Equations and Applications to Prion Diseases],", Ph.D thesis, (2011).

[5]

P. Laurençot and B. Perthame, Exponential decay for the growth-fragmentation/cell-division equation,, Comm. Math. Sci., 7 (2009), 503.

[6]

J. A. J. Metz and O. Diekmann, eds., "The Dynamics of Physiologically Structured Populations,", Lecture notes in Biomathematics, 68 (1986).

[7]

P. Michel, Existence of a solution to the cell division eigenproblem,, Math. Models Methods Appl. Sci., 16 (2006), 1125. doi: 10.1142/S0218202506001480.

[8]

P. Michel, S. Mischler and B. Perthame, General entropy equations for structured population models and scattering,, C. R. Math. Acad. Sci. Paris, 338 (2004), 697. doi: 10.1016/j.crma.2004.03.006.

[9]

P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models,, J. Math. Pures Appl. (9), 84 (2005), 1235. doi: 10.1016/j.matpur.2005.04.001.

[10]

B. Perthame, "Transport Equations in Biology,", Frontiers in Mathematics, (2007).

[11]

B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation,, J. Differential Equations, 210 (2005), 155. doi: 10.1016/j.jde.2004.10.018.

[12]

B. Perthame and D. Salort, Distributed elapsed time model for neuron networks,, in preparation., ().

[13]

R. Wong, "Asymptotic Approximation of Integrals,", Corrected reprint of the 1989 original, 34 (1989). doi: 10.1137/1.9780898719260.

[1]

Yue-Jun Peng, Yong-Fu Yang. Long-time behavior and stability of entropy solutions for linearly degenerate hyperbolic systems of rich type. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3683-3706. doi: 10.3934/dcds.2015.35.3683

[2]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[3]

Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509

[4]

Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105

[5]

Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873

[6]

Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112

[7]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

[8]

Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041

[9]

Elena Bonetti, Pierluigi Colli, Mauro Fabrizio, Gianni Gilardi. Modelling and long-time behaviour for phase transitions with entropy balance and thermal memory conductivity . Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1001-1026. doi: 10.3934/dcdsb.2006.6.1001

[10]

Eduard Feireisl, Françoise Issard-Roch, Hana Petzeltová. Long-time behaviour and convergence towards equilibria for a conserved phase field model. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : 239-252. doi: 10.3934/dcds.2004.10.239

[11]

Marie Doumic, Miguel Escobedo. Time asymptotics for a critical case in fragmentation and growth-fragmentation equations. Kinetic & Related Models, 2016, 9 (2) : 251-297. doi: 10.3934/krm.2016.9.251

[12]

Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437

[13]

Lia Bronsard, Seong-A Shim. Long-time behavior for competition-diffusion systems via viscosity comparison. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 561-581. doi: 10.3934/dcds.2005.13.561

[14]

Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102

[15]

Igor Chueshov, Irena Lasiecka, Justin Webster. Flow-plate interactions: Well-posedness and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 925-965. doi: 10.3934/dcdss.2014.7.925

[16]

Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15

[17]

Robert Glassey, Stephen Pankavich, Jack Schaeffer. On long-time behavior of monocharged and neutral plasma in one and one-half dimensions. Kinetic & Related Models, 2009, 2 (3) : 465-488. doi: 10.3934/krm.2009.2.465

[18]

Horst Osberger. Long-time behavior of a fully discrete Lagrangian scheme for a family of fourth order equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 405-434. doi: 10.3934/dcds.2017017

[19]

Philippe Chartier, Norbert J. Mauser, Florian Méhats, Yong Zhang. Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1327-1349. doi: 10.3934/dcdss.2016053

[20]

Belkacem Said-Houari. Long-time behavior of solutions of the generalized Korteweg--de Vries equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 245-252. doi: 10.3934/dcdsb.2016.21.245

2016 Impact Factor: 1.261

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (9)

[Back to Top]