2013, 6(5): 1151-1162. doi: 10.3934/dcdss.2013.6.1151

Time-averages of fast oscillatory systems

1. 

School of Mathematical and Statistical Sciences, Arizona State University, Wexler Hall (PSA), Tempe, Arizona, 85287-1804, United States, United States

Received  December 2011 Revised  March 2012 Published  March 2013

Time-averages are common observables in analysis of experimental data and numerical simulations of physical systems. We describe a straightforward framework for studying time-averages of dynamical systems whose solutions exhibit fast oscillatory behaviors. Time integration averages out the oscillatory part of the solution that is caused by the large skew-symmetric operator. Then, the time-average of the solution stays close to the kernel of this operator. The key assumption in this framework is that the inverse of the large operator is a bounded mapping between certain Hilbert spaces modular the kernel of the operator itself. This assumption is verified for several examples of time-dependent PDEs.
Citation: Bin Cheng, Alex Mahalov. Time-averages of fast oscillatory systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1151-1162. doi: 10.3934/dcdss.2013.6.1151
References:
[1]

W. Arendt, C. Batty, M. Hieber and F. Neubrander, "Vector-Valued Laplace Transforms and Cauchy Problems,", Monographs in Mathematics, 96 (2001).

[2]

A. Babin, A. Mahalov and B. Nicolaenko, Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids,, European J. Mechanics B Fluids, 15 (1996), 291.

[3]

A. Babin, A. Mahalov and B. Nicolaenko, Global splitting and regularity of rotating shallow-water equations,, European J. Mech. B Fluids, 16 (1997), 725.

[4]

H. Beirão da Veiga, On the barotropic motion of compressible perfect fluids,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8 (1981), 317.

[5]

Bin Cheng, Singular limits and convergence rates of compressible Euler and rotating shallow water equations,, SIAM J. on Mathematical Analysis, 44 (2012), 1050. doi: 10.1137/11085147X.

[6]

Bin Cheng and Alex Mahalov, Euler equations on a fast rotating sphere-time-averages and zonal flows,, European J. Mech. - B/Fluids, 37 (2013), 48. doi: 10.1016/j.euromechflu.2012.06.001.

[7]

D. G. Ebin, The motion of slightly compressible fluids viewed as a motion with strong constraining force,, Ann. of Math. (2), 105 (1977), 141.

[8]

David G. Ebin, Motion of slightly compressible fluids in a bounded domain. I., Comm. Pure Appl. Math., 35 (1982), 451. doi: 10.1002/cpa.3160350402.

[9]

B. Galperin, H. Nakano, H. Huang and S. Sukoriansky, The ubiquitous zonal jets in the atmospheres of giant planets and Earth oceans,, Geophys. Res. Lett., 31 (2004).

[10]

B. Galperin, S. Sukoriansky, N. Dikovskaya, P. L. Read, Y. H. Yamazaki and R. Wordsworth, Anisotropic turbulence and zonal jets in rotating flows with a $\beta$-effect,, Nonlinear Processes in Geophysics, 13 (2006), 83.

[11]

E. Garcýa-Melendo and A. Sánchez-Lavega, A study of the stability of Jovian zonal winds from HST images: 1995-2000,, Icarus, 152 (2001), 316.

[12]

H.-P. Huang, B. Galperin and S. Sukoriansky, Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere,, Phys. Fluids, 13 (2001), 225.

[13]

N. A. Maximenko, B. Bang and H. Sasaki, Observational evidence of alternating jets in the world ocean,, Geophys. Res. Lett., 32 (2005).

[14]

, NASA/JPL/University of Arizona,, , ().

[15]

Sergiu Klainerman and Andrew Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids,, Comm. Pure Appl. Math., 34 (1981), 481. doi: 10.1002/cpa.3160340405.

[16]

H.-O. Kreiss, Problems with different time scales for partial differential equations,, Comm. Pure Appl. Math., 33 (1980), 399. doi: 10.1002/cpa.3160330310.

[17]

T. Nozawa and S. Yoden, Formation of zonal band structure in forced two-dimensional turbulence on a rotating sphere,, Phys. Fluids, 9 (1997), 2081. doi: 10.1063/1.869327.

[18]

C. Porco, et al., Cassini imaging of Jupiter atmosphere, satellites and rings,, Science, 299 (2003), 1541.

[19]

G. Roden, Upper ocean thermohaline, oxygen, nutrients, and flow structure near the date line in the summer of 1993,, J. Geophys. Res., 103 (1998), 12919.

[20]

G. Roden, Flow and water property structures between the Bering Sea and Fiji in the summer of 1993,, J. Geophys. Res., 105 (2000), 28595.

[21]

S. Sukoriansky, B. Galperin and N. Dikovskaya, Universal spectrum of two-dimensional turbulence on a rotating sphere and some basic features of atmospheric circulation on giant planets,, Phys. Rev. Lett., 89 (2002).

[22]

G. Vallis and M. Maltrud, Generation of mean flows and jets on a beta plane and over topography,, J. Phys. Oceanogr., 23 (1993), 1346.

show all references

References:
[1]

W. Arendt, C. Batty, M. Hieber and F. Neubrander, "Vector-Valued Laplace Transforms and Cauchy Problems,", Monographs in Mathematics, 96 (2001).

[2]

A. Babin, A. Mahalov and B. Nicolaenko, Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids,, European J. Mechanics B Fluids, 15 (1996), 291.

[3]

A. Babin, A. Mahalov and B. Nicolaenko, Global splitting and regularity of rotating shallow-water equations,, European J. Mech. B Fluids, 16 (1997), 725.

[4]

H. Beirão da Veiga, On the barotropic motion of compressible perfect fluids,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8 (1981), 317.

[5]

Bin Cheng, Singular limits and convergence rates of compressible Euler and rotating shallow water equations,, SIAM J. on Mathematical Analysis, 44 (2012), 1050. doi: 10.1137/11085147X.

[6]

Bin Cheng and Alex Mahalov, Euler equations on a fast rotating sphere-time-averages and zonal flows,, European J. Mech. - B/Fluids, 37 (2013), 48. doi: 10.1016/j.euromechflu.2012.06.001.

[7]

D. G. Ebin, The motion of slightly compressible fluids viewed as a motion with strong constraining force,, Ann. of Math. (2), 105 (1977), 141.

[8]

David G. Ebin, Motion of slightly compressible fluids in a bounded domain. I., Comm. Pure Appl. Math., 35 (1982), 451. doi: 10.1002/cpa.3160350402.

[9]

B. Galperin, H. Nakano, H. Huang and S. Sukoriansky, The ubiquitous zonal jets in the atmospheres of giant planets and Earth oceans,, Geophys. Res. Lett., 31 (2004).

[10]

B. Galperin, S. Sukoriansky, N. Dikovskaya, P. L. Read, Y. H. Yamazaki and R. Wordsworth, Anisotropic turbulence and zonal jets in rotating flows with a $\beta$-effect,, Nonlinear Processes in Geophysics, 13 (2006), 83.

[11]

E. Garcýa-Melendo and A. Sánchez-Lavega, A study of the stability of Jovian zonal winds from HST images: 1995-2000,, Icarus, 152 (2001), 316.

[12]

H.-P. Huang, B. Galperin and S. Sukoriansky, Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere,, Phys. Fluids, 13 (2001), 225.

[13]

N. A. Maximenko, B. Bang and H. Sasaki, Observational evidence of alternating jets in the world ocean,, Geophys. Res. Lett., 32 (2005).

[14]

, NASA/JPL/University of Arizona,, , ().

[15]

Sergiu Klainerman and Andrew Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids,, Comm. Pure Appl. Math., 34 (1981), 481. doi: 10.1002/cpa.3160340405.

[16]

H.-O. Kreiss, Problems with different time scales for partial differential equations,, Comm. Pure Appl. Math., 33 (1980), 399. doi: 10.1002/cpa.3160330310.

[17]

T. Nozawa and S. Yoden, Formation of zonal band structure in forced two-dimensional turbulence on a rotating sphere,, Phys. Fluids, 9 (1997), 2081. doi: 10.1063/1.869327.

[18]

C. Porco, et al., Cassini imaging of Jupiter atmosphere, satellites and rings,, Science, 299 (2003), 1541.

[19]

G. Roden, Upper ocean thermohaline, oxygen, nutrients, and flow structure near the date line in the summer of 1993,, J. Geophys. Res., 103 (1998), 12919.

[20]

G. Roden, Flow and water property structures between the Bering Sea and Fiji in the summer of 1993,, J. Geophys. Res., 105 (2000), 28595.

[21]

S. Sukoriansky, B. Galperin and N. Dikovskaya, Universal spectrum of two-dimensional turbulence on a rotating sphere and some basic features of atmospheric circulation on giant planets,, Phys. Rev. Lett., 89 (2002).

[22]

G. Vallis and M. Maltrud, Generation of mean flows and jets on a beta plane and over topography,, J. Phys. Oceanogr., 23 (1993), 1346.

[1]

Daniel Karrasch, Mohammad Farazmand, George Haller. Attraction-based computation of hyperbolic Lagrangian coherent structures. Journal of Computational Dynamics, 2015, 2 (1) : 83-93. doi: 10.3934/jcd.2015.2.83

[2]

Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, Vitali Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 537-557. doi: 10.3934/dcdsb.2010.13.537

[3]

Isabelle Gallagher. A mathematical review of the analysis of the betaplane model and equatorial waves. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 461-480. doi: 10.3934/dcdss.2008.1.461

[4]

Piotr Oprocha. Coherent lists and chaotic sets. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 797-825. doi: 10.3934/dcds.2011.31.797

[5]

Andreas Strömbergsson. On the deviation of ergodic averages for horocycle flows. Journal of Modern Dynamics, 2013, 7 (2) : 291-328. doi: 10.3934/jmd.2013.7.291

[6]

Guillaume Bal, Lenya Ryzhik. Stability of time reversed waves in changing media. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 793-815. doi: 10.3934/dcds.2005.12.793

[7]

Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118

[8]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[9]

Xuejuan Lu, Lulu Hui, Shengqiang Liu, Jia Li. A mathematical model of HTLV-I infection with two time delays. Mathematical Biosciences & Engineering, 2015, 12 (3) : 431-449. doi: 10.3934/mbe.2015.12.431

[10]

Jonathan A. Sherratt, Alexios D. Synodinos. Vegetation patterns and desertification waves in semi-arid environments: Mathematical models based on local facilitation in plants. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2815-2827. doi: 10.3934/dcdsb.2012.17.2815

[11]

Thierry Colin, Pierre Fabrie. Semidiscretization in time for nonlinear Schrödinger-waves equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 671-690. doi: 10.3934/dcds.1998.4.671

[12]

Albert Fannjiang, Knut Solna. Time reversal of parabolic waves and two-frequency Wigner distribution. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 783-802. doi: 10.3934/dcdsb.2006.6.783

[13]

Youcef Mammeri. On the decay in time of solutions of some generalized regularized long waves equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 513-532. doi: 10.3934/cpaa.2008.7.513

[14]

T. Colin, Géraldine Ebrard, Gérard Gallice. Semi-discretization in time for nonlinear Zakharov waves equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 263-282. doi: 10.3934/dcdsb.2009.11.263

[15]

Amjad Khan, Dmitry E. Pelinovsky. Long-time stability of small FPU solitary waves. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2065-2075. doi: 10.3934/dcds.2017088

[16]

Todd Young. Asymptotic measures and distributions of Birkhoff averages with respect to Lebesgue measure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 359-378. doi: 10.3934/dcds.2003.9.359

[17]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[18]

William F. Thompson, Rachel Kuske, Yue-Xian Li. Stochastic phase dynamics of noise driven synchronization of two conditional coherent oscillators. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2971-2995. doi: 10.3934/dcds.2012.32.2971

[19]

Michael Dellnitz, Christian Horenkamp. The efficient approximation of coherent pairs in non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3029-3042. doi: 10.3934/dcds.2012.32.3029

[20]

William D. Kalies, Konstantin Mischaikow, Robert C.A.M. Vandervorst. Lattice structures for attractors I. Journal of Computational Dynamics, 2014, 1 (2) : 307-338. doi: 10.3934/jcd.2014.1.307

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]