2013, 18(6): 1567-1579. doi: 10.3934/dcdsb.2013.18.1567

Asymptotic behaviour for a class of delayed cooperative models with patch structure

1. 

Departamento de Matemática and CMAF, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

Received  September 2011 Revised  January 2012 Published  March 2013

For a class of cooperative population models with patch structure and multiple discrete delays, we give conditions for the absolute global asymptotic stability of both the trivial solution and -- when it exists -- a positive equilibrium. Under a sublinearity condition, sharper results are obtained. The existence of positive heteroclinic solutions connecting the two equilibria is also addressed. As a by-product, we obtain a criterion for the existence of positive traveling wave solutions for an associated reaction-diffusion model with patch structure. Our results improve and generalize criteria in the recent literature.
Citation: Teresa Faria. Asymptotic behaviour for a class of delayed cooperative models with patch structure. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1567-1579. doi: 10.3934/dcdsb.2013.18.1567
References:
[1]

T. Faria, Global asymptotic behaviour for a Nicholson model with patch structure and multiple delays,, Nonlinear Anal., 74 (2011), 7033. doi: 10.1016/j.na.2011.07.024.

[2]

T. Faria and J. J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, J. Differential Equations, 244 (2008), 1049. doi: 10.1016/j.jde.2007.12.005.

[3]

T. Faria and S. Trofimchuk, Positive travelling fronts for reaction-diffusion systems with distributed delay,, Nonlinearity, 23 (2010), 2457. doi: 10.1088/0951-7715/23/10/006.

[4]

M. Fiedler, "Special Matrices and Their Applications in Numerical Mathematics,", Martinus Nijhoff Publ., (1986). doi: 10.1007/978-94-009-4335-3.

[5]

B. Liu, Global stability of a class of delay differential systems,, J. Comput. Appl. Math., 233 (2009), 217. doi: 10.1016/j.cam.2009.07.024.

[6]

H. L. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, 41 (1995).

[7]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995). doi: 10.1017/CBO9780511530043.

[8]

Y. Takeuchi, J. Cui, R. Miyazaki and Y. Saito, Permanence of delayed population model with dispersal loss,, Math. Biosci., 201 (2006), 143. doi: 10.1016/j.mbs.2005.12.012.

[9]

Y. Takeuchi, W. Wang and Y. Saito, Global stability of population models with patch structure,, Nonlinear Anal. Real World Appl., 7 (2006), 235. doi: 10.1016/j.nonrwa.2005.02.005.

[10]

W. Wang, P. Fergola and C. Tenneriello, Global attractivity of periodic solutions of population models,, J. Math. Anal. Appl., 211 (1997), 498. doi: 10.1006/jmaa.1997.5484.

[11]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,, Cann. Appl. Math. Quart., 4 (1996), 421.

show all references

References:
[1]

T. Faria, Global asymptotic behaviour for a Nicholson model with patch structure and multiple delays,, Nonlinear Anal., 74 (2011), 7033. doi: 10.1016/j.na.2011.07.024.

[2]

T. Faria and J. J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, J. Differential Equations, 244 (2008), 1049. doi: 10.1016/j.jde.2007.12.005.

[3]

T. Faria and S. Trofimchuk, Positive travelling fronts for reaction-diffusion systems with distributed delay,, Nonlinearity, 23 (2010), 2457. doi: 10.1088/0951-7715/23/10/006.

[4]

M. Fiedler, "Special Matrices and Their Applications in Numerical Mathematics,", Martinus Nijhoff Publ., (1986). doi: 10.1007/978-94-009-4335-3.

[5]

B. Liu, Global stability of a class of delay differential systems,, J. Comput. Appl. Math., 233 (2009), 217. doi: 10.1016/j.cam.2009.07.024.

[6]

H. L. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, 41 (1995).

[7]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995). doi: 10.1017/CBO9780511530043.

[8]

Y. Takeuchi, J. Cui, R. Miyazaki and Y. Saito, Permanence of delayed population model with dispersal loss,, Math. Biosci., 201 (2006), 143. doi: 10.1016/j.mbs.2005.12.012.

[9]

Y. Takeuchi, W. Wang and Y. Saito, Global stability of population models with patch structure,, Nonlinear Anal. Real World Appl., 7 (2006), 235. doi: 10.1016/j.nonrwa.2005.02.005.

[10]

W. Wang, P. Fergola and C. Tenneriello, Global attractivity of periodic solutions of population models,, J. Math. Anal. Appl., 211 (1997), 498. doi: 10.1006/jmaa.1997.5484.

[11]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,, Cann. Appl. Math. Quart., 4 (1996), 421.

[1]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[2]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[3]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[4]

Sze-Bi Hsu, Ming-Chia Li, Weishi Liu, Mikhail Malkin. Heteroclinic foliation, global oscillations for the Nicholson-Bailey model and delay of stability loss. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1465-1492. doi: 10.3934/dcds.2003.9.1465

[5]

A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373

[6]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[7]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[8]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

[9]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[10]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[11]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[12]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[13]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[14]

Christian Lax, Sebastian Walcher. A note on global asymptotic stability of nonautonomous master equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2143-2149. doi: 10.3934/dcdsb.2013.18.2143

[15]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-11. doi: 10.3934/jimo.2018099

[16]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[17]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[18]

Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173

[19]

C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008

[20]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]