2013, 6(6): 1473-1485. doi: 10.3934/dcdss.2013.6.1473

On the Cosserat model for thin rods made of thermoelastic materials with voids

1. 

Department of Mathematics, University "A.I. Cuza" of Iaşi, 700506 Iaşi, Romania

2. 

Faculty of Mechanical Engineering, Otto-von-Guericke-University, 39106 Magdeburg, Germany

Received  June 2012 Revised  September 2012 Published  April 2013

In this paper we employ a Cosserat model for rod-like bodies and study the governing equations of thin thermoelastic porous rods. We apply the counterpart of Korn's inequality in the three-dimensional elasticity theory to prove existence and uniqueness results concerning the solutions to boundary value problems for thermoelastic porous rods, both in the dynamical theory and in the equilibrium case.
Citation: Mircea Bîrsan, Holm Altenbach. On the Cosserat model for thin rods made of thermoelastic materials with voids. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1473-1485. doi: 10.3934/dcdss.2013.6.1473
References:
[1]

H. Altenbach, K. Naumenko and P. A. Zhilin, A direct approach to the formulation of constitutive equations for rods and shells,, in, (2006), 87.

[2]

M. Bîrsan, Inequalities of Korn's type and existence results in the theory of Cosserat elastic shells,, J. Elasticity, 90 (2008), 227. doi: 10.1007/s10659-007-9140-2.

[3]

M. Bîrsan and H. Altenbach, A mathematical study of the linear theory for orthotropic elastic simple shells,, Math. Meth. Appl. Sci., 33 (2010), 1399. doi: 10.1002/mma.1253.

[4]

M. Bîrsan and H. Altenbach, Theory of thin thermoelastic rods made of porous materials,, Arch. Appl. Mech., 81 (2011), 1365. doi: 10.1007/s00419-010-0490-z.

[5]

M. Bîrsan and H. Altenbach, The Korn-type inequality in a Cosserat model for thin thermoelastic porous rods,, Meccanica, 47 (2011), 789. doi: 10.1007/s11012-011-9477-2.

[6]

M. Bîrsan and T. Bîrsan, An inequality of Cauchy-Schwarz type with application in the theory of elastic rods,, Libertas Mathematica, 31 (2011), 123.

[7]

H. Brezis, "Analyse Fonctionelle. Théorie et Applications,", (French) [Functional Analysis: Theory and Applications], (1983).

[8]

G. Capriz, "Continua with Microstructure,", Springer Tracts in Natural Philosophy, 35 (1989). doi: 10.1007/978-1-4612-3584-2.

[9]

G. Capriz and P. Podio-Guidugli, Materials with spherical structure,, Arch. Rational Mech. Anal., 75 (1981), 269. doi: 10.1007/BF00250786.

[10]

P. G. Ciarlet, "Mathematical Elasticity, Vol. I. Three-Dimensional Elasticity,", Studies in Mathematics and its Applications, 20 (1988).

[11]

P. G. Ciarlet, "Mathematical Elasticity. Vol. III. Theory of Shells,", Studies in Mathematics and its Applications, 29 (2000).

[12]

P. G. Ciarlet, "An Introduction to Differential Geometry with Applications to Elasticity,", Springer, (2005).

[13]

E. Cosserat and F. Cosserat, "Théorie des Corps Déformables,", (French) [Theory of deformable bodies], (1909).

[14]

S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids,, J. Elasticity, 13 (1983), 125. doi: 10.1007/BF00041230.

[15]

M. A. Goodman and S. C. Cowin, A continuum theory for granular materials,, Arch. Rational Mech. Anal., 44 (1972), 249. doi: 10.1007/BF00284326.

[16]

A. E. Green and P. M. Naghdi, On thermal effects in the theory of rods,, Int. J. Solids Struct., 15 (1979), 829. doi: 10.1016/0020-7683(79)90053-2.

[17]

L. P. Lebedev, M. J. Cloud and V. A. Eremeyev, "Tensor Analysis with Applications in Mechanics,", World Scientific Publishing Co. Pte. Ltd., (2010). doi: 10.1142/9789814313995.

[18]

A. I. Lurie, "Theory of Elasticity,", Foundations of Engineering Mechanics, (2005). doi: 10.1007/978-3-540-26455-2.

[19]

P. Neff, On Korn's first inequality with non-constant coefficients,, Proc. Roy. Soc. Edinb. A, 132 (2002), 221. doi: 10.1017/S0308210500001591.

[20]

P. Neff, A geometrically exact planar Cosserat shell-model with microstructure: Existence of minimizers for zero Cosserat couple modulus,, Math. Models Meth. Appl. Sci., 17 (2007), 363. doi: 10.1142/S0218202507001954.

[21]

J. W. Nunziato and S. C. Cowin, A nonlinear theory of elastic materials with voids,, Arch. Rational Mech. Anal., 72 (1979), 175. doi: 10.1007/BF00249363.

[22]

G. Panasenko, "Multi-scale Modelling for Structures and Composites,", Springer, (2005).

[23]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983). doi: 10.1007/978-1-4612-5561-1.

[24]

M. B. Rubin, "Cosserat Theories: Shells, Rods, and Points,", Solid Mechanics and Its Applications, 79 (2000). doi: 10.1007/978-94-015-9379-3.

[25]

J. G. Simmonds, A simple nonlinear thermodynamic theory of arbitrary elastic beams,, J. Elasticity, 81 (2005), 51. doi: 10.1007/s10659-005-9003-7.

[26]

V. A. Svetlitsky, "Statics of Rods,", Foundations of Engineering Mechanics, (2000).

[27]

D. Tiba and R. Vodák, A general asymptotic model for Lipschitzian curved rods,, Adv. Math. Sci. Appl., 15 (2005), 137.

[28]

I. I. Vrabie, "$C_0$-Semigroups and Applications,", North-Holland Mathematics Studies, 191 (2003).

[29]

P. A. Zhilin, Nonlinear theory of thin rods,, in, (2006), 227.

[30]

P. A. Zhilin, "Applied Mechanics: Theory of Thin Elastic Rods,", (in Russian), (2007).

show all references

References:
[1]

H. Altenbach, K. Naumenko and P. A. Zhilin, A direct approach to the formulation of constitutive equations for rods and shells,, in, (2006), 87.

[2]

M. Bîrsan, Inequalities of Korn's type and existence results in the theory of Cosserat elastic shells,, J. Elasticity, 90 (2008), 227. doi: 10.1007/s10659-007-9140-2.

[3]

M. Bîrsan and H. Altenbach, A mathematical study of the linear theory for orthotropic elastic simple shells,, Math. Meth. Appl. Sci., 33 (2010), 1399. doi: 10.1002/mma.1253.

[4]

M. Bîrsan and H. Altenbach, Theory of thin thermoelastic rods made of porous materials,, Arch. Appl. Mech., 81 (2011), 1365. doi: 10.1007/s00419-010-0490-z.

[5]

M. Bîrsan and H. Altenbach, The Korn-type inequality in a Cosserat model for thin thermoelastic porous rods,, Meccanica, 47 (2011), 789. doi: 10.1007/s11012-011-9477-2.

[6]

M. Bîrsan and T. Bîrsan, An inequality of Cauchy-Schwarz type with application in the theory of elastic rods,, Libertas Mathematica, 31 (2011), 123.

[7]

H. Brezis, "Analyse Fonctionelle. Théorie et Applications,", (French) [Functional Analysis: Theory and Applications], (1983).

[8]

G. Capriz, "Continua with Microstructure,", Springer Tracts in Natural Philosophy, 35 (1989). doi: 10.1007/978-1-4612-3584-2.

[9]

G. Capriz and P. Podio-Guidugli, Materials with spherical structure,, Arch. Rational Mech. Anal., 75 (1981), 269. doi: 10.1007/BF00250786.

[10]

P. G. Ciarlet, "Mathematical Elasticity, Vol. I. Three-Dimensional Elasticity,", Studies in Mathematics and its Applications, 20 (1988).

[11]

P. G. Ciarlet, "Mathematical Elasticity. Vol. III. Theory of Shells,", Studies in Mathematics and its Applications, 29 (2000).

[12]

P. G. Ciarlet, "An Introduction to Differential Geometry with Applications to Elasticity,", Springer, (2005).

[13]

E. Cosserat and F. Cosserat, "Théorie des Corps Déformables,", (French) [Theory of deformable bodies], (1909).

[14]

S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids,, J. Elasticity, 13 (1983), 125. doi: 10.1007/BF00041230.

[15]

M. A. Goodman and S. C. Cowin, A continuum theory for granular materials,, Arch. Rational Mech. Anal., 44 (1972), 249. doi: 10.1007/BF00284326.

[16]

A. E. Green and P. M. Naghdi, On thermal effects in the theory of rods,, Int. J. Solids Struct., 15 (1979), 829. doi: 10.1016/0020-7683(79)90053-2.

[17]

L. P. Lebedev, M. J. Cloud and V. A. Eremeyev, "Tensor Analysis with Applications in Mechanics,", World Scientific Publishing Co. Pte. Ltd., (2010). doi: 10.1142/9789814313995.

[18]

A. I. Lurie, "Theory of Elasticity,", Foundations of Engineering Mechanics, (2005). doi: 10.1007/978-3-540-26455-2.

[19]

P. Neff, On Korn's first inequality with non-constant coefficients,, Proc. Roy. Soc. Edinb. A, 132 (2002), 221. doi: 10.1017/S0308210500001591.

[20]

P. Neff, A geometrically exact planar Cosserat shell-model with microstructure: Existence of minimizers for zero Cosserat couple modulus,, Math. Models Meth. Appl. Sci., 17 (2007), 363. doi: 10.1142/S0218202507001954.

[21]

J. W. Nunziato and S. C. Cowin, A nonlinear theory of elastic materials with voids,, Arch. Rational Mech. Anal., 72 (1979), 175. doi: 10.1007/BF00249363.

[22]

G. Panasenko, "Multi-scale Modelling for Structures and Composites,", Springer, (2005).

[23]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983). doi: 10.1007/978-1-4612-5561-1.

[24]

M. B. Rubin, "Cosserat Theories: Shells, Rods, and Points,", Solid Mechanics and Its Applications, 79 (2000). doi: 10.1007/978-94-015-9379-3.

[25]

J. G. Simmonds, A simple nonlinear thermodynamic theory of arbitrary elastic beams,, J. Elasticity, 81 (2005), 51. doi: 10.1007/s10659-005-9003-7.

[26]

V. A. Svetlitsky, "Statics of Rods,", Foundations of Engineering Mechanics, (2000).

[27]

D. Tiba and R. Vodák, A general asymptotic model for Lipschitzian curved rods,, Adv. Math. Sci. Appl., 15 (2005), 137.

[28]

I. I. Vrabie, "$C_0$-Semigroups and Applications,", North-Holland Mathematics Studies, 191 (2003).

[29]

P. A. Zhilin, Nonlinear theory of thin rods,, in, (2006), 227.

[30]

P. A. Zhilin, "Applied Mechanics: Theory of Thin Elastic Rods,", (in Russian), (2007).

[1]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[2]

Abdallah Ben Abdallah, Farhat Shel. Exponential stability of a general network of 1-d thermoelastic rods. Mathematical Control & Related Fields, 2012, 2 (1) : 1-16. doi: 10.3934/mcrf.2012.2.1

[3]

Giuseppina Autuori, Patrizia Pucci. Entire solutions of nonlocal elasticity models for composite materials. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 357-377. doi: 10.3934/dcdss.2018020

[4]

Claude Vallée, Camelia Lerintiu, Danielle Fortuné, Kossi Atchonouglo, Jamal Chaoufi. Modelling of implicit standard materials. Application to linear coaxial non-associated constitutive laws. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1641-1649. doi: 10.3934/dcdss.2013.6.1641

[5]

S. E. Pastukhova. Asymptotic analysis in elasticity problems on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (3) : 577-604. doi: 10.3934/nhm.2009.4.577

[6]

Stan Chiriţă. Spatial behavior in the vibrating thermoviscoelastic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2027-2038. doi: 10.3934/dcdsb.2014.19.2027

[7]

Merab Svanadze. On the theory of viscoelasticity for materials with double porosity. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2335-2352. doi: 10.3934/dcdsb.2014.19.2335

[8]

Thi-Bich-Ngoc Mac. Existence of solution for a system of repulsion and alignment: Comparison between theory and simulation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3013-3027. doi: 10.3934/dcdsb.2015.20.3013

[9]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[10]

Salim A. Messaoudi, Abdelfeteh Fareh. Exponential decay for linear damped porous thermoelastic systems with second sound. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 599-612. doi: 10.3934/dcdsb.2015.20.599

[11]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

[12]

M. Carme Leseduarte, Antonio Magaña, Ramón Quintanilla. On the time decay of solutions in porous-thermo-elasticity of type II. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 375-391. doi: 10.3934/dcdsb.2010.13.375

[13]

Yuming Qin, Xinguang Yang, Zhiyong Ma. Global existence of solutions for the thermoelastic Bresse system. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1395-1406. doi: 10.3934/cpaa.2014.13.1395

[14]

Changchun Liu, Jingxue Yin, Juan Zhou. Existence of weak solutions for a generalized thin film equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 465-480. doi: 10.3934/cpaa.2007.6.465

[15]

Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070

[16]

Zhong-Jie Han, Gen-Qi Xu. Exponential decay in non-uniform porous-thermo-elasticity model of Lord-Shulman type. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 57-77. doi: 10.3934/dcdsb.2012.17.57

[17]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189

[18]

Tomás Caraballo, I. D. Chueshov, Pedro Marín-Rubio, José Real. Existence and asymptotic behaviour for stochastic heat equations with multiplicative noise in materials with memory. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 253-270. doi: 10.3934/dcds.2007.18.253

[19]

Lorena Bociu, Jean-Paul Zolésio. Existence for the linearization of a steady state fluid/nonlinear elasticity interaction. Conference Publications, 2011, 2011 (Special) : 184-197. doi: 10.3934/proc.2011.2011.184

[20]

Dorin Ieşan. Strain gradient theory of porous solids with initial stresses and initial heat flux. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2169-2187. doi: 10.3934/dcdsb.2014.19.2169

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]