• Previous Article
    Ultraparabolic equations with nonlocal delayed boundary conditions
  • DCDS Home
  • This Issue
  • Next Article
    Resolution and optimal regularity for a biharmonic equation with impedance boundary conditions and some generalizations
2013, 33(11&12): 4967-4990. doi: 10.3934/dcds.2013.33.4967

Boundary value problem for elliptic differential equations in non-commutative cases

1. 

Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna

2. 

Laboratoire de Mathématiques Appliquées du Havre, Université du Havre, 25 rue Philippe Lebon, CS 80540, 76058 Le Havre Cedex, France, France, France

Received  November 2011 Revised  February 2012 Published  May 2013

This paper is devoted to abstract second order complete elliptic differential equations set on $\left[ 0,1\right] $ in non-commutative cases. Existence, uniqueness and maximal regularity of the strict solution are proved. The study is performed in $C^{\theta }\left( \left[ 0,1\right] ;X\right) $.
Citation: Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967
References:
[1]

G. Da Prato, Abstract differential equations, maximal regularity and linearization,, in, 45 (1986), 359.

[2]

G. Da Prato and P. Grisvard, Sommes d'opérateurs linéaires et équations différentielles opérationnelles,, J. Math. Pures Appl. (9), 54 (1975), 305.

[3]

A. Favini, R. Labbas, S. Maingot and M. Meisner, Study of complete abstract elliptic differential equations in non-commutative cases,, Appl. Anal., 91 (2012), 1495. doi: 10.1080/00036811.2011.635652.

[4]

A. Favini, R. Labbas, S. Maingot, H. Tanabe and A. Yagi, Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces,, Discrete Contin. Dyn. Syst., 22 (2008), 973. doi: 10.3934/dcds.2008.22.973.

[5]

P. Grisvard, Spazi di tracce e applicazioni,, Rend. Mat. (6), 5 (1972), 657.

[6]

B. H. Haak, M. Haase and P. C. Kunstmann, Perturbation, interpolation, and maximal regularity,, Adv. Differential Equations, 11 (2006), 201.

[7]

J. L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation,, Inst. Hautes Études Sci. Publ. Math., 19 (1964), 5.

[8]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Birkhaüser Verlag, (1995).

[9]

E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions,, J. Math. Anal. Appl., 107 (1985), 16. doi: 10.1016/0022-247X(85)90353-1.

[10]

H. Triebel, "Interpolation Theory, Functions Spaces, Differential Operators,", North-Holland Publishing Co., (1978).

show all references

References:
[1]

G. Da Prato, Abstract differential equations, maximal regularity and linearization,, in, 45 (1986), 359.

[2]

G. Da Prato and P. Grisvard, Sommes d'opérateurs linéaires et équations différentielles opérationnelles,, J. Math. Pures Appl. (9), 54 (1975), 305.

[3]

A. Favini, R. Labbas, S. Maingot and M. Meisner, Study of complete abstract elliptic differential equations in non-commutative cases,, Appl. Anal., 91 (2012), 1495. doi: 10.1080/00036811.2011.635652.

[4]

A. Favini, R. Labbas, S. Maingot, H. Tanabe and A. Yagi, Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces,, Discrete Contin. Dyn. Syst., 22 (2008), 973. doi: 10.3934/dcds.2008.22.973.

[5]

P. Grisvard, Spazi di tracce e applicazioni,, Rend. Mat. (6), 5 (1972), 657.

[6]

B. H. Haak, M. Haase and P. C. Kunstmann, Perturbation, interpolation, and maximal regularity,, Adv. Differential Equations, 11 (2006), 201.

[7]

J. L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation,, Inst. Hautes Études Sci. Publ. Math., 19 (1964), 5.

[8]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Birkhaüser Verlag, (1995).

[9]

E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions,, J. Math. Anal. Appl., 107 (1985), 16. doi: 10.1016/0022-247X(85)90353-1.

[10]

H. Triebel, "Interpolation Theory, Functions Spaces, Differential Operators,", North-Holland Publishing Co., (1978).

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963

[3]

Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184

[4]

Luisa Arlotti. Explicit transport semigroup associated to abstract boundary conditions. Conference Publications, 2011, 2011 (Special) : 102-111. doi: 10.3934/proc.2011.2011.102

[5]

Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations & Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016

[6]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2018194

[7]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973

[8]

Mustapha Cheggag, Angelo Favini, Rabah Labbas, Stéphane Maingot, Ahmed Medeghri. Complete abstract differential equations of elliptic type with general Robin boundary conditions, in UMD spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 523-538. doi: 10.3934/dcdss.2011.4.523

[9]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[10]

Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155-159. doi: 10.3934/proc.2007.2007.155

[11]

Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070

[12]

Marie-Françoise Bidaut-Véron, Marta García-Huidobro, Cecilia Yarur. Large solutions of elliptic systems of second order and applications to the biharmonic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 411-432. doi: 10.3934/dcds.2012.32.411

[13]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[14]

Alassane Niang. Boundary regularity for a degenerate elliptic equation with mixed boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (1) : 107-128. doi: 10.3934/cpaa.2019007

[15]

Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883

[16]

Jaeyoung Byeon, Sangdon Jin. The Hénon equation with a critical exponent under the Neumann boundary condition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4353-4390. doi: 10.3934/dcds.2018190

[17]

Simona Fornaro, Giorgio Metafune, Diego Pallara, Roland Schnaubelt. Second order elliptic operators in $L^2$ with first order degeneration at the boundary and outward pointing drift. Communications on Pure & Applied Analysis, 2015, 14 (2) : 407-419. doi: 10.3934/cpaa.2015.14.407

[18]

Stephen M. Gagola III, Joanne L. Hall. Constructing commutative semifields of square order. Advances in Mathematics of Communications, 2016, 10 (2) : 291-306. doi: 10.3934/amc.2016006

[19]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[20]

Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (2)

[Back to Top]