2013, 8(2): 541-572. doi: 10.3934/nhm.2013.8.541

Homogenization of hexagonal lattices

1. 

UPMC Univ Paris 06, UMR 7598 LJLL, Paris, F-75005, France

2. 

Laboratoire MAP5, UMR CNRS 8145, Université Paris Descartes, Paris, France

Received  January 2012 Revised  December 2012 Published  May 2013

We characterize the macroscopic effective mechanical behavior of a graphene sheet modeled by a hexagonal lattice of elastic bars, using $\Gamma$-convergence.
Citation: Hervé Le Dret, Annie Raoult. Homogenization of hexagonal lattices. Networks & Heterogeneous Media, 2013, 8 (2) : 541-572. doi: 10.3934/nhm.2013.8.541
References:
[1]

R. Alicandro, A. Braides and M. Cicalese, Continuum limits of discrete thin films with superlinear growth densities,, Calc. Var. Partial Diff. Eq., 33 (2008), 267. doi: 10.1007/s00526-008-0159-4.

[2]

R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth,, SIAM J. Math. Anal., 36 (2004), 1. doi: 10.1137/S0036141003426471.

[3]

R. Alicandro, M. Cicalese and A. Gloria, Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity,, Arch. Rational Mech. Anal., 200 (2011), 881. doi: 10.1007/s00205-010-0378-7.

[4]

S. Bae, et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes,, Nature Nanotechnology, 5 (2010), 574. doi: 10.1038/nnano.2010.132.

[5]

M. Barchiesi and A. Gloria, New counterexamples to the cell formula in nonconvex homogenization,, Arch. Rational Mech. Anal., 195 (2010), 991. doi: 10.1007/s00205-009-0226-9.

[6]

X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics,, Arch. Rational Mech. Anal., 164 (2002), 341. doi: 10.1007/s00205-002-0218-5.

[7]

A. Braides and M. S. Gelli, From discrete systems to continuous variational problems: An introduction,, in, 2 (2006), 3. doi: 10.1007/978-3-540-36546-4_1.

[8]

A. Braides and M. S. Gelli, Continuum limits of discrete systems without convexity hypotheses,, Math. Mech. Solids, 7 (2002), 41. doi: 10.1177/1081286502007001229.

[9]

D. Caillerie, A. Mourad and A. Raoult, Discrete homogenization in graphene sheet modeling,, J. Elast., 84 (2006), 33. doi: 10.1007/s10659-006-9053-5.

[10]

S. Conti, G. Dolzmann, B. Kirchheim and S. Müller, Sufficient conditions for the validity of the Cauchy-Born rule close to $SO(n)$,, J. Eur. Math. Soc., 8 (2006), 515. doi: 10.4171/JEMS/65.

[11]

B. Dacorogna, "Direct Methods in the Calculus of Variations," Second edition,, Applied Mathematical Sciences, 78 (2008).

[12]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Progress in Nonlinear Differential Equations and their Applications, 8 (1993). doi: 10.1007/978-1-4612-0327-8.

[13]

W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids: Static problems,, Arch. Rational Mech. Anal., 183 (2007), 241. doi: 10.1007/s00205-006-0031-7.

[14]

J. L. Ericksen, On the Cauchy-Born rule,, Math. Mech. Solids, 13 (2008), 199. doi: 10.1177/1081286507086898.

[15]

G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice,, J. Nonlinear Sci., 12 (2002), 445. doi: 10.1007/s00332-002-0495-z.

[16]

A. K. Geim and A. H. MacDonald, Graphene: Exploring carbon flatland,, Physics Today, 60 (2007), 35. doi: 10.1063/1.2774096.

[17]

H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity,, J. Math. Pures Appl. (9), 74 (1995), 549.

[18]

H. Le Dret and A. Raoult, Homogenization of hexagonal lattices,, C. R. Acad. Sci. Paris, 349 (2011), 111. doi: 10.1016/j.crma.2010.12.012.

[19]

P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems,, Ann. Mat. Pura Appl. (4), 117 (1978), 139. doi: 10.1007/BF02417888.

[20]

N. Meunier, O. Pantz and A. Raoult, Elastic limit of square lattices with three point interactions,, Math. Mod. Meth. Appl. Sci., 22 (2012). doi: 10.1142/S0218202512500327.

[21]

S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials,, Arch. Rational Mech. Anal., 99 (1987), 189. doi: 10.1007/BF00284506.

[22]

G. Odegard, Equivalent-continuum modeling of nanostructured materials,, ChemInform, 38 (2007). doi: 10.1002/chin.200723218.

[23]

A. Raoult, D. Caillerie and A. Mourad, Elastic lattices: Equilibrium, invariant laws and homogenization,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 54 (2008), 297. doi: 10.1007/s11565-008-0054-0.

[24]

B. Schmidt, On the passage from atomic to continuum theory for thin films,, Arch. Ration. Mech. Anal., 190 (2008), 1. doi: 10.1007/s00205-008-0138-0.

show all references

References:
[1]

R. Alicandro, A. Braides and M. Cicalese, Continuum limits of discrete thin films with superlinear growth densities,, Calc. Var. Partial Diff. Eq., 33 (2008), 267. doi: 10.1007/s00526-008-0159-4.

[2]

R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth,, SIAM J. Math. Anal., 36 (2004), 1. doi: 10.1137/S0036141003426471.

[3]

R. Alicandro, M. Cicalese and A. Gloria, Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity,, Arch. Rational Mech. Anal., 200 (2011), 881. doi: 10.1007/s00205-010-0378-7.

[4]

S. Bae, et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes,, Nature Nanotechnology, 5 (2010), 574. doi: 10.1038/nnano.2010.132.

[5]

M. Barchiesi and A. Gloria, New counterexamples to the cell formula in nonconvex homogenization,, Arch. Rational Mech. Anal., 195 (2010), 991. doi: 10.1007/s00205-009-0226-9.

[6]

X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics,, Arch. Rational Mech. Anal., 164 (2002), 341. doi: 10.1007/s00205-002-0218-5.

[7]

A. Braides and M. S. Gelli, From discrete systems to continuous variational problems: An introduction,, in, 2 (2006), 3. doi: 10.1007/978-3-540-36546-4_1.

[8]

A. Braides and M. S. Gelli, Continuum limits of discrete systems without convexity hypotheses,, Math. Mech. Solids, 7 (2002), 41. doi: 10.1177/1081286502007001229.

[9]

D. Caillerie, A. Mourad and A. Raoult, Discrete homogenization in graphene sheet modeling,, J. Elast., 84 (2006), 33. doi: 10.1007/s10659-006-9053-5.

[10]

S. Conti, G. Dolzmann, B. Kirchheim and S. Müller, Sufficient conditions for the validity of the Cauchy-Born rule close to $SO(n)$,, J. Eur. Math. Soc., 8 (2006), 515. doi: 10.4171/JEMS/65.

[11]

B. Dacorogna, "Direct Methods in the Calculus of Variations," Second edition,, Applied Mathematical Sciences, 78 (2008).

[12]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Progress in Nonlinear Differential Equations and their Applications, 8 (1993). doi: 10.1007/978-1-4612-0327-8.

[13]

W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids: Static problems,, Arch. Rational Mech. Anal., 183 (2007), 241. doi: 10.1007/s00205-006-0031-7.

[14]

J. L. Ericksen, On the Cauchy-Born rule,, Math. Mech. Solids, 13 (2008), 199. doi: 10.1177/1081286507086898.

[15]

G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice,, J. Nonlinear Sci., 12 (2002), 445. doi: 10.1007/s00332-002-0495-z.

[16]

A. K. Geim and A. H. MacDonald, Graphene: Exploring carbon flatland,, Physics Today, 60 (2007), 35. doi: 10.1063/1.2774096.

[17]

H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity,, J. Math. Pures Appl. (9), 74 (1995), 549.

[18]

H. Le Dret and A. Raoult, Homogenization of hexagonal lattices,, C. R. Acad. Sci. Paris, 349 (2011), 111. doi: 10.1016/j.crma.2010.12.012.

[19]

P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems,, Ann. Mat. Pura Appl. (4), 117 (1978), 139. doi: 10.1007/BF02417888.

[20]

N. Meunier, O. Pantz and A. Raoult, Elastic limit of square lattices with three point interactions,, Math. Mod. Meth. Appl. Sci., 22 (2012). doi: 10.1142/S0218202512500327.

[21]

S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials,, Arch. Rational Mech. Anal., 99 (1987), 189. doi: 10.1007/BF00284506.

[22]

G. Odegard, Equivalent-continuum modeling of nanostructured materials,, ChemInform, 38 (2007). doi: 10.1002/chin.200723218.

[23]

A. Raoult, D. Caillerie and A. Mourad, Elastic lattices: Equilibrium, invariant laws and homogenization,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 54 (2008), 297. doi: 10.1007/s11565-008-0054-0.

[24]

B. Schmidt, On the passage from atomic to continuum theory for thin films,, Arch. Ration. Mech. Anal., 190 (2008), 1. doi: 10.1007/s00205-008-0138-0.

[1]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[2]

Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial & Management Optimization, 2007, 3 (2) : 381-398. doi: 10.3934/jimo.2007.3.381

[3]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[4]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[5]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[6]

Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753

[7]

Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787

[8]

Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503

[9]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[10]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

[11]

Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks & Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61

[12]

Patrick Henning. Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks & Heterogeneous Media, 2012, 7 (3) : 503-524. doi: 10.3934/nhm.2012.7.503

[13]

Erik Kropat. Homogenization of optimal control problems on curvilinear networks with a periodic microstructure --Results on $\boldsymbol{S}$-homogenization and $\boldsymbol{Γ}$-convergence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 51-76. doi: 10.3934/naco.2017003

[14]

Manuel Friedrich, Bernd Schmidt. On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks & Heterogeneous Media, 2015, 10 (2) : 321-342. doi: 10.3934/nhm.2015.10.321

[15]

Zhuchun Li, Yi Liu, Xiaoping Xue. Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 345-367. doi: 10.3934/dcds.2019014

[16]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[17]

Bernd Schmidt. On the derivation of linear elasticity from atomistic models. Networks & Heterogeneous Media, 2009, 4 (4) : 789-812. doi: 10.3934/nhm.2009.4.789

[18]

Enrico Capobianco. Born to be big: Data, graphs, and their entangled complexity. Big Data & Information Analytics, 2016, 1 (2&3) : 163-169. doi: 10.3934/bdia.2016002

[19]

M. I. Alomar, David Sánchez. Thermopower of a graphene monolayer with inhomogeneous spin-orbit interaction. Conference Publications, 2015, 2015 (special) : 1-9. doi: 10.3934/proc.2015.0001

[20]

Kevin Kuo, Phong Luu, Duy Nguyen, Eric Perkerson, Katherine Thompson, Qing Zhang. Pairs trading: An optimal selling rule. Mathematical Control & Related Fields, 2015, 5 (3) : 489-499. doi: 10.3934/mcrf.2015.5.489

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]