• Previous Article
    Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters
  • DCDS-B Home
  • This Issue
  • Next Article
    Mean-square convergence of numerical approximations for a class of backward stochastic differential equations
2013, 18(8): 2029-2050. doi: 10.3934/dcdsb.2013.18.2029

Blow-up dynamics of self-attracting diffusive particles driven by competing convexities

1. 

Unité de Mathématiques Pures et Appliquées, CNRS UMR 5669, École Normale Supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon cedex 07, France

2. 

Laboratoire d'Analyse et Probabilité, Université d'Evry Val d'Essonne, 23 Bd. de France, F-91037 Evry Cedex, France

Received  January 2013 Revised  May 2013 Published  July 2013

In this paper, we analyze the dynamics of an $N$ particles system evolving according the gradient flow of an energy functional. The particle system is an approximation of the Lagrangian formulation of a one parameter family of non-local drift-diffusion equations in one spatial dimension. We shall prove the global in time existence of the trajectories of the particles (under a sufficient condition on the initial distribution) and give two blow-up criteria. All these results are consequences of the competition between the discrete entropy and the discrete interaction energy. They are also consistent with the continuous setting, that in turn is a one dimension reformulation of the parabolic-elliptic Keller-Segel system in high dimensions.
Citation: Vincent Calvez, Lucilla Corrias. Blow-up dynamics of self-attracting diffusive particles driven by competing convexities. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2029-2050. doi: 10.3934/dcdsb.2013.18.2029
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Lectures in Mathematics ETH Zürich, (2005).

[2]

D. Benedetto, E. Caglioti, J. A. Carrillo and M. Pulvirenti, A non-Maxwellian steady distribution for one-dimensional granular media,, J. Stat. Phys., 91 (1998), 979. doi: 10.1023/A:1023032000560.

[3]

D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for granular media,, RAIRO Modél. Math. Anal. Numér., 31 (1997), 615.

[4]

P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles. III,, Colloq. Math., 68 (1995), 229.

[5]

P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles. I,, Colloq. Math., 66 (1994), 319.

[6]

P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems,, SIAM J. Appl. Math., 59 (1999), 845. doi: 10.1137/S0036139996313447.

[7]

A. Blanchet, V. Calvez and J. A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model,, SIAM J. Numer. Anal., 46 (2008), 691. doi: 10.1137/070683337.

[8]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions,, Electron. J. Diff. Eqns., 2006 (2006), 1.

[9]

V. Calvez and J. A. Carrillo, Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities,, Proc. Amer. Math. Soc., 140 (2012), 3515. doi: 10.1090/S0002-9939-2012-11306-1.

[10]

V. Calvez, L. Corrias and A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension,, Comm. Partial Differential Equations, 37 (2012), 561. doi: 10.1080/03605302.2012.655824.

[11]

V. Calvez, B. Perthame and M. Sharifi tabar, Modified Keller-Segel system and critical mass for the log interaction kernel,, in, 429 (2007), 45. doi: 10.1090/conm/429/08229.

[12]

E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on $\mathbbS^n$,, Geom. Funct. Anal., 2 (1992), 90. doi: 10.1007/BF01895706.

[13]

J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media,, Arch. Rat. Mech. Anal., 179 (2006), 217. doi: 10.1007/s00205-005-0386-1.

[14]

J. A. Carrillo and G. Toscani, Wasserstein metric and large-time asymptotics of nonlinear diffusion equations,, in, (2004), 234.

[15]

L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions,, Milan J. Math., 72 (2004), 1. doi: 10.1007/s00032-003-0026-x.

[16]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Property of Functions,'', Studies in Advanced Mathematics, (1992).

[17]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.2307/2153966.

[18]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1. doi: 10.1137/S0036141096303359.

[19]

E. F. Keller and L. A. Segel., Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5.

[20]

E. F. Keller and L. A. Segel, Model for chemotaxis,, J. Theor. Biol., 30 (1971), 225. doi: 10.1016/0022-5193(71)90050-6.

[21]

T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis,, J. Funct. Anal., 191 (2002), 17. doi: 10.1006/jfan.2001.3802.

[22]

C. Sire and P.-H. Chavanis, Post-collapse dynamics of self-gravitating Brownian particles and bacterial populations,, Phys. Rev. E, 69 (2004).

[23]

C. Sire and P.-H. Chavanis, Critical dynamics of self-gravitating Langevin particles and bacterial populations,, Phys. Rev. E (3), 78 (2008). doi: 10.1103/PhysRevE.78.061111.

[24]

C. Villani, "Topics in Optimal Transportation,", Graduate Studies in Mathematics, (2003). doi: 10.1007/b12016.

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Lectures in Mathematics ETH Zürich, (2005).

[2]

D. Benedetto, E. Caglioti, J. A. Carrillo and M. Pulvirenti, A non-Maxwellian steady distribution for one-dimensional granular media,, J. Stat. Phys., 91 (1998), 979. doi: 10.1023/A:1023032000560.

[3]

D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for granular media,, RAIRO Modél. Math. Anal. Numér., 31 (1997), 615.

[4]

P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles. III,, Colloq. Math., 68 (1995), 229.

[5]

P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles. I,, Colloq. Math., 66 (1994), 319.

[6]

P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems,, SIAM J. Appl. Math., 59 (1999), 845. doi: 10.1137/S0036139996313447.

[7]

A. Blanchet, V. Calvez and J. A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model,, SIAM J. Numer. Anal., 46 (2008), 691. doi: 10.1137/070683337.

[8]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions,, Electron. J. Diff. Eqns., 2006 (2006), 1.

[9]

V. Calvez and J. A. Carrillo, Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities,, Proc. Amer. Math. Soc., 140 (2012), 3515. doi: 10.1090/S0002-9939-2012-11306-1.

[10]

V. Calvez, L. Corrias and A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension,, Comm. Partial Differential Equations, 37 (2012), 561. doi: 10.1080/03605302.2012.655824.

[11]

V. Calvez, B. Perthame and M. Sharifi tabar, Modified Keller-Segel system and critical mass for the log interaction kernel,, in, 429 (2007), 45. doi: 10.1090/conm/429/08229.

[12]

E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on $\mathbbS^n$,, Geom. Funct. Anal., 2 (1992), 90. doi: 10.1007/BF01895706.

[13]

J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media,, Arch. Rat. Mech. Anal., 179 (2006), 217. doi: 10.1007/s00205-005-0386-1.

[14]

J. A. Carrillo and G. Toscani, Wasserstein metric and large-time asymptotics of nonlinear diffusion equations,, in, (2004), 234.

[15]

L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions,, Milan J. Math., 72 (2004), 1. doi: 10.1007/s00032-003-0026-x.

[16]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Property of Functions,'', Studies in Advanced Mathematics, (1992).

[17]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.2307/2153966.

[18]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1. doi: 10.1137/S0036141096303359.

[19]

E. F. Keller and L. A. Segel., Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5.

[20]

E. F. Keller and L. A. Segel, Model for chemotaxis,, J. Theor. Biol., 30 (1971), 225. doi: 10.1016/0022-5193(71)90050-6.

[21]

T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis,, J. Funct. Anal., 191 (2002), 17. doi: 10.1006/jfan.2001.3802.

[22]

C. Sire and P.-H. Chavanis, Post-collapse dynamics of self-gravitating Brownian particles and bacterial populations,, Phys. Rev. E, 69 (2004).

[23]

C. Sire and P.-H. Chavanis, Critical dynamics of self-gravitating Langevin particles and bacterial populations,, Phys. Rev. E (3), 78 (2008). doi: 10.1103/PhysRevE.78.061111.

[24]

C. Villani, "Topics in Optimal Transportation,", Graduate Studies in Mathematics, (2003). doi: 10.1007/b12016.

[1]

Maria Antonietta Farina, Monica Marras, Giuseppe Viglialoro. On explicit lower bounds and blow-up times in a model of chemotaxis. Conference Publications, 2015, 2015 (special) : 409-417. doi: 10.3934/proc.2015.0409

[2]

Evgeny Galakhov, Olga Salieva. Blow-up for nonlinear inequalities with gradient terms and singularities on unbounded sets. Conference Publications, 2015, 2015 (special) : 489-494. doi: 10.3934/proc.2015.0489

[3]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

[4]

Björn Sandstede, Arnd Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 941-964. doi: 10.3934/dcds.2004.10.941

[5]

Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299

[6]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[7]

Philippe Souplet, Juan-Luis Vázquez. Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 221-234. doi: 10.3934/dcds.2006.14.221

[8]

Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2291-2300. doi: 10.3934/dcdsb.2017096

[9]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[10]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[11]

Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443

[12]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[13]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

[14]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[15]

W. Edward Olmstead, Colleen M. Kirk, Catherine A. Roberts. Blow-up in a subdiffusive medium with advection. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1655-1667. doi: 10.3934/dcds.2010.28.1655

[16]

Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691

[17]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[18]

José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43

[19]

Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271

[20]

Ming Lu, Yi Du, Zheng-An Yao. Blow-up phenomena for the 3D compressible MHD equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1835-1855. doi: 10.3934/dcds.2012.32.1835

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]