2014, 34(2): 511-529. doi: 10.3934/dcds.2014.34.511

The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body

1. 

Department of Mathematics and Center of Smart Interfaces (CSI), Technische Universität Darmstadt, 64289 Darmstadt, Germany

2. 

Department of Mathematics, Oregon State University, Corvallis, OR 97331, United States, United States

3. 

Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1

Received  July 2012 Revised  April 2013 Published  August 2013

We derive the fundamental solution of the linearized problem of the motion of a viscous fluid around a rotating body when the axis of rotation of the body is not parallel to the velocity of the fluid at infinity.
Citation: Reinhard Farwig, Ronald B. Guenther, Enrique A. Thomann, Šárka Nečasová. The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 511-529. doi: 10.3934/dcds.2014.34.511
References:
[1]

P. Deuring, S. Kračmar and Š. Nečasová, A representation formula for linearized stationary incompressible viscous flows around rotating and translating bodies,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 237. doi: 10.3934/dcdss.2010.3.237.

[2]

P. Deuring, S. Kračmar and Š. Nečasová, On pointwise decay of linearized stationary incompressible viscous flow around rotating and translating bodies,, SIAM J. Math. Anal., 43 (2011), 705. doi: 10.1137/100786198.

[3]

P. Deuring, S. Kračmar and Š. Nečasová, Linearized stationary incompressible flow around rotating and translating bodies: Asymptotic profile of the velocity gradient and decay estimate of the second derivatives of the velocity,, J. Differential Equations, 252 (2012), 459. doi: 10.1016/j.jde.2011.08.037.

[4]

P. Deuring, S. Kračmar and Š. Nečasová, A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: Improved decay estimates of the velocity and its gradient,, Dynamical Systems, (2011), 351.

[5]

R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces,, Math. Z., 211 (1992), 409. doi: 10.1007/BF02571437.

[6]

R. Farwig, An $L^q$-analysis of viscous fluid flow past a rotating obstacle,, Tôhoku Math. J., 58 (2006), 129. doi: 10.2748/tmj/1145390210.

[7]

R. Farwig, Estimates of lower order derivatives of viscous fluid flow past a rotating obstacle,, in, 70 (2005), 73. doi: 10.4064/bc70-0-5.

[8]

R. Farwig, G. P. Galdi and M. Kyed, Asymptotic structure of a Leray solution to the Navier-Stokes flow around a rotating body,, Pacific J. Math., 253 (2011), 367. doi: 10.2140/pjm.2011.253.367.

[9]

R. Farwig and T. Hishida, Stationary Navier-Stokes flow around a rotating obstacles,, Funkcial. Ekvac., 50 (2007), 371. doi: 10.1619/fesi.50.371.

[10]

R. Farwig and T. Hishida, Asymptotic profile of steady Stokes flow around a rotating obstacle,, Manuscripta Math., 136 (2011), 315. doi: 10.1007/s00229-011-0479-0.

[11]

R. Farwig and T. Hishida, Asymptotic profiles of steady Stokes and Navier-Stokes flows around a rotating obstacle,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 55 (2009), 263. doi: 10.1007/s11565-009-0072-6.

[12]

R. Farwig and T. Hishida, Leading term at infinity of steady Navier-Stokes flow around a rotating obstacle,, Math. Nachr., 284 (2011), 2065. doi: 10.1002/mana.200910192.

[13]

R. Farwig, T. Hishida and D. Müller, $L^q$-Theory of a singular "winding" integral operator arising from fluid dynamics,, Pacific J. Math., 215 (2004), 297. doi: 10.2140/pjm.2004.215.297.

[14]

R. Farwig, M. Krbec and Š. Nečasová, A weighted $L^q$-approach to Oseen flow around a rotating body,, Math. Methods Appl. Sci., 31 (2008), 551. doi: 10.1002/mma.925.

[15]

R. Farwig, M. Krbec and Š. Nečasová, A weighted $L^q$-approach to Stokes flow around a rotating body,, Ann. Univ. Ferrara, 54 (2008), 61. doi: 10.1007/s11565-008-0040-6.

[16]

R. Farwig and J. Neustupa, On the spectrum of a Stokes-type operator arising from flow around a rotating body,, Manuscripta Math., 122 (2007), 419. doi: 10.1007/s00229-007-0078-2.

[17]

R. Farwig, Š. Nečasová and J. Neustupa, Spectral analysis of a Stokes-type operator arising from flow around a rotating body,, J. Math. Soc. Japan, 63 (2011), 163. doi: 10.2969/jmsj/06310163.

[18]

R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated problems,, Arch. Ration. Mech. Anal., 19 (1965), 363.

[19]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall Inc., (1964).

[20]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems,", Springer Tracts in Natural Philosophy, 38 (1994). doi: 10.1007/978-1-4612-5364-8.

[21]

G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,, in, (2002), 653.

[22]

G. P. Galdi, Steady flow of a Navier-Stokes fluid around a rotating obstacle,, J. Elasticity, 71 (2003), 1. doi: 10.1023/B:ELAS.0000005543.00407.5e.

[23]

G. P. Galdi and M. Kyed, Asymptotic behavior of a Leray solution around a rotating obstacle,, in, 80 (2011), 251. doi: 10.1007/978-3-0348-0075-4_13.

[24]

G. P. Galdi and M. Kyed, Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable,, Arch. Ration. Mech. Anal., 200 (2011), 21. doi: 10.1007/s00205-010-0350-6.

[25]

G. P. Galdi and A. L. Silvestre, On the steady motion of a Navier-Stokes liquid around a rigid body,, Arch. Rational Mech. Anal., 184 (2006), 371. doi: 10.1007/s00205-006-0026-4.

[26]

G. P. Galdi and A. L. Silvestre, Further results on steady-state flow of a Navier-Stokes liquid around a rigid body. Existence of the wake,, in, (2007), 127.

[27]

M. Geissert, H. Heck and M. Hieber, $L^p$ theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle,, J. Reine Angew. Math., 596 (2006), 45. doi: 10.1515/CRELLE.2006.051.

[28]

T. Hansel, On the Navier-Stokes equations with rotating effect and prescribed outflow velocity,, J. Math. Fluid Mech., 13 (2011), 405. doi: 10.1007/s00021-010-0026-x.

[29]

T. Hishida, The Stokes operator with rotating effect in exterior domains,, Analysis (Munich), 19 (1999), 51.

[30]

T. Hishida, $L^q$ estimates of weak solutions to the stationary Stokes equations around a rotating body,, J. Math. Soc. Japan, 58 (2006), 743. doi: 10.2969/jmsj/1156342036.

[31]

T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle,, Arch. Ration. Mech. Anal., 150 (1999), 307. doi: 10.1007/s002050050190.

[32]

T. Hishida and Y. Shibata, $L_p-L_q$ estimate of Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle,, Arch. Ration. Mech. Anal., 193 (2009), 339. doi: 10.1007/s00205-008-0130-8.

[33]

S. Kračmar, Š. Nečasová and P. Penel, Anisotropic $L^2$ estimates of weak solutions to the stationary Oseen type equations in $\mathbbR^{3}$ for a rotating body,, RIMS Kokyuroku Bessatsu, B1 (2007), 219.

[34]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Second English edition, (1969).

[35]

W. Magnus, F. Oberhettinger and R. P. Soni, "Formulas and Theorems for the Special Functions of Mathematical Physics,", Third enlarged edition, (1966).

[36]

G. Da Prato and A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions,, J. Funct. Anal., 131 (1995), 94. doi: 10.1006/jfan.1995.1084.

[37]

V. A. Solonnikov, Estimates of the solutions of a nonstationary linearized system of Navier-Stokes equations,, (English) Amer. Math. Soc. Transl. Ser. 2, 75 (1968), 1.

[38]

V. A. Solonnikov, On estimates of solutions of the non-stationary Stokes problem in anisotropic Sobolev spaces and on estimates for the resolvent of the Stokes operator,, (English) Russian Math. Surveys, 58 (2003), 331. doi: 10.1070/RM2003v058n02ABEH000613.

[39]

E. A. Thomann and R. B. Guenther, The fundamental solution of the linearized Navier-Stokes equations for spinning bodies in three spatial dimensions-time dependent case,, J. Math. Fluid Mech., 8 (2006), 77. doi: 10.1007/s00021-004-0139-1.

show all references

References:
[1]

P. Deuring, S. Kračmar and Š. Nečasová, A representation formula for linearized stationary incompressible viscous flows around rotating and translating bodies,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 237. doi: 10.3934/dcdss.2010.3.237.

[2]

P. Deuring, S. Kračmar and Š. Nečasová, On pointwise decay of linearized stationary incompressible viscous flow around rotating and translating bodies,, SIAM J. Math. Anal., 43 (2011), 705. doi: 10.1137/100786198.

[3]

P. Deuring, S. Kračmar and Š. Nečasová, Linearized stationary incompressible flow around rotating and translating bodies: Asymptotic profile of the velocity gradient and decay estimate of the second derivatives of the velocity,, J. Differential Equations, 252 (2012), 459. doi: 10.1016/j.jde.2011.08.037.

[4]

P. Deuring, S. Kračmar and Š. Nečasová, A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: Improved decay estimates of the velocity and its gradient,, Dynamical Systems, (2011), 351.

[5]

R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces,, Math. Z., 211 (1992), 409. doi: 10.1007/BF02571437.

[6]

R. Farwig, An $L^q$-analysis of viscous fluid flow past a rotating obstacle,, Tôhoku Math. J., 58 (2006), 129. doi: 10.2748/tmj/1145390210.

[7]

R. Farwig, Estimates of lower order derivatives of viscous fluid flow past a rotating obstacle,, in, 70 (2005), 73. doi: 10.4064/bc70-0-5.

[8]

R. Farwig, G. P. Galdi and M. Kyed, Asymptotic structure of a Leray solution to the Navier-Stokes flow around a rotating body,, Pacific J. Math., 253 (2011), 367. doi: 10.2140/pjm.2011.253.367.

[9]

R. Farwig and T. Hishida, Stationary Navier-Stokes flow around a rotating obstacles,, Funkcial. Ekvac., 50 (2007), 371. doi: 10.1619/fesi.50.371.

[10]

R. Farwig and T. Hishida, Asymptotic profile of steady Stokes flow around a rotating obstacle,, Manuscripta Math., 136 (2011), 315. doi: 10.1007/s00229-011-0479-0.

[11]

R. Farwig and T. Hishida, Asymptotic profiles of steady Stokes and Navier-Stokes flows around a rotating obstacle,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 55 (2009), 263. doi: 10.1007/s11565-009-0072-6.

[12]

R. Farwig and T. Hishida, Leading term at infinity of steady Navier-Stokes flow around a rotating obstacle,, Math. Nachr., 284 (2011), 2065. doi: 10.1002/mana.200910192.

[13]

R. Farwig, T. Hishida and D. Müller, $L^q$-Theory of a singular "winding" integral operator arising from fluid dynamics,, Pacific J. Math., 215 (2004), 297. doi: 10.2140/pjm.2004.215.297.

[14]

R. Farwig, M. Krbec and Š. Nečasová, A weighted $L^q$-approach to Oseen flow around a rotating body,, Math. Methods Appl. Sci., 31 (2008), 551. doi: 10.1002/mma.925.

[15]

R. Farwig, M. Krbec and Š. Nečasová, A weighted $L^q$-approach to Stokes flow around a rotating body,, Ann. Univ. Ferrara, 54 (2008), 61. doi: 10.1007/s11565-008-0040-6.

[16]

R. Farwig and J. Neustupa, On the spectrum of a Stokes-type operator arising from flow around a rotating body,, Manuscripta Math., 122 (2007), 419. doi: 10.1007/s00229-007-0078-2.

[17]

R. Farwig, Š. Nečasová and J. Neustupa, Spectral analysis of a Stokes-type operator arising from flow around a rotating body,, J. Math. Soc. Japan, 63 (2011), 163. doi: 10.2969/jmsj/06310163.

[18]

R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated problems,, Arch. Ration. Mech. Anal., 19 (1965), 363.

[19]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall Inc., (1964).

[20]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems,", Springer Tracts in Natural Philosophy, 38 (1994). doi: 10.1007/978-1-4612-5364-8.

[21]

G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,, in, (2002), 653.

[22]

G. P. Galdi, Steady flow of a Navier-Stokes fluid around a rotating obstacle,, J. Elasticity, 71 (2003), 1. doi: 10.1023/B:ELAS.0000005543.00407.5e.

[23]

G. P. Galdi and M. Kyed, Asymptotic behavior of a Leray solution around a rotating obstacle,, in, 80 (2011), 251. doi: 10.1007/978-3-0348-0075-4_13.

[24]

G. P. Galdi and M. Kyed, Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable,, Arch. Ration. Mech. Anal., 200 (2011), 21. doi: 10.1007/s00205-010-0350-6.

[25]

G. P. Galdi and A. L. Silvestre, On the steady motion of a Navier-Stokes liquid around a rigid body,, Arch. Rational Mech. Anal., 184 (2006), 371. doi: 10.1007/s00205-006-0026-4.

[26]

G. P. Galdi and A. L. Silvestre, Further results on steady-state flow of a Navier-Stokes liquid around a rigid body. Existence of the wake,, in, (2007), 127.

[27]

M. Geissert, H. Heck and M. Hieber, $L^p$ theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle,, J. Reine Angew. Math., 596 (2006), 45. doi: 10.1515/CRELLE.2006.051.

[28]

T. Hansel, On the Navier-Stokes equations with rotating effect and prescribed outflow velocity,, J. Math. Fluid Mech., 13 (2011), 405. doi: 10.1007/s00021-010-0026-x.

[29]

T. Hishida, The Stokes operator with rotating effect in exterior domains,, Analysis (Munich), 19 (1999), 51.

[30]

T. Hishida, $L^q$ estimates of weak solutions to the stationary Stokes equations around a rotating body,, J. Math. Soc. Japan, 58 (2006), 743. doi: 10.2969/jmsj/1156342036.

[31]

T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle,, Arch. Ration. Mech. Anal., 150 (1999), 307. doi: 10.1007/s002050050190.

[32]

T. Hishida and Y. Shibata, $L_p-L_q$ estimate of Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle,, Arch. Ration. Mech. Anal., 193 (2009), 339. doi: 10.1007/s00205-008-0130-8.

[33]

S. Kračmar, Š. Nečasová and P. Penel, Anisotropic $L^2$ estimates of weak solutions to the stationary Oseen type equations in $\mathbbR^{3}$ for a rotating body,, RIMS Kokyuroku Bessatsu, B1 (2007), 219.

[34]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Second English edition, (1969).

[35]

W. Magnus, F. Oberhettinger and R. P. Soni, "Formulas and Theorems for the Special Functions of Mathematical Physics,", Third enlarged edition, (1966).

[36]

G. Da Prato and A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions,, J. Funct. Anal., 131 (1995), 94. doi: 10.1006/jfan.1995.1084.

[37]

V. A. Solonnikov, Estimates of the solutions of a nonstationary linearized system of Navier-Stokes equations,, (English) Amer. Math. Soc. Transl. Ser. 2, 75 (1968), 1.

[38]

V. A. Solonnikov, On estimates of solutions of the non-stationary Stokes problem in anisotropic Sobolev spaces and on estimates for the resolvent of the Stokes operator,, (English) Russian Math. Surveys, 58 (2003), 331. doi: 10.1070/RM2003v058n02ABEH000613.

[39]

E. A. Thomann and R. B. Guenther, The fundamental solution of the linearized Navier-Stokes equations for spinning bodies in three spatial dimensions-time dependent case,, J. Math. Fluid Mech., 8 (2006), 77. doi: 10.1007/s00021-004-0139-1.

[1]

Trinh Viet Duoc. Navier-Stokes-Oseen flows in the exterior of a rotating and translating obstacle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3387-3405. doi: 10.3934/dcds.2018145

[2]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[3]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[4]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[5]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[6]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[7]

Yinnian He, Kaitai Li. Nonlinear Galerkin approximation of the two dimensional exterior Navier-Stokes problem. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 467-482. doi: 10.3934/dcds.1996.2.467

[8]

Edward Belbruno. Random walk in the three-body problem and applications. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519

[9]

Ernesto A. Lacomba, Mario Medina. Oscillatory motions in the rectangular four body problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 557-587. doi: 10.3934/dcdss.2008.1.557

[10]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[11]

Davide L. Ferrario, Alessandro Portaluri. Dynamics of the the dihedral four-body problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 925-974. doi: 10.3934/dcdss.2013.6.925

[12]

Paul Deuring, Stanislav Kračmar, Šárka Nečasová. Linearized stationary incompressible flow around rotating and translating bodies -- Leray solutions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 967-979. doi: 10.3934/dcdss.2014.7.967

[13]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[14]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[15]

Konstantinos Chrysafinos. Error estimates for time-discretizations for the velocity tracking problem for Navier-Stokes flows by penalty methods. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1077-1096. doi: 10.3934/dcdsb.2006.6.1077

[16]

Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41

[17]

Ping Chen, Ting Zhang. A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients. Communications on Pure & Applied Analysis, 2008, 7 (4) : 987-1016. doi: 10.3934/cpaa.2008.7.987

[18]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[19]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[20]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

[Back to Top]