# American Institute of Mathematical Sciences

February  2014, 34(2): 567-587. doi: 10.3934/dcds.2014.34.567

## Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces

 1 College of Mathematics and Computer Science, Fuzhou University, Fuzhou, 361000, China 2 Institute of Applied Physics and Computational Mathematics, P.O.Box 8009-28, Beijing 100088 3 Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China

Received  September 2012 Revised  May 2013 Published  August 2013

We prove the global existence of weak solutions to the Navier-Stokes equations of compressible heat-conducting fluids in two spatial dimensions with initial data and external forces which are large and spherically symmetric. The solutions will be obtained as the limit of the approximate solutions in an annular domain. We first derive a number of regularity results on the approximate physical quantities in the fluid region'', as well as the new uniform integrability of the velocity and temperature in the entire space-time domain by exploiting the theory of the Orlicz spaces. By virtue of these a priori estimates we then argue in a manner similar to that in [Arch. Rational Mech. Anal. 173 (2004), 297-343] to pass to the limit and show that the limiting functions are indeed a weak solution which satisfies the mass and momentum equations in the entire space-time domain in the sense of distributions, and the energy equation in any compact subset of the fluid region''.
Citation: Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567
##### References:
 [1] R. A. Adams and J. John, "Sobolev Space,", $2^{nd}$ edition, (2005).   Google Scholar [2] D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl. (9), 87 (2007), 57.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar [3] R. Erban, On the existence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow,, Math. Meth. Appl. Sci., 26 (2003), 489.  doi: 10.1002/mma.362.  Google Scholar [4] E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford Lecture Series in Mathematics and its Applications, 26 (2004).   Google Scholar [5] E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not integrable,, Comment. Math. Univ. Carolinae, 42 (2001), 83.   Google Scholar [6] E. Feireisl and A. Novotnỳ, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009).  doi: 10.1007/978-3-7643-8843-0.  Google Scholar [7] E. Feireisl, A. Novotnỳ and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.  doi: 10.1007/PL00000976.  Google Scholar [8] H. Frid and V. Shelukhin, Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry,, SIAM J. Math. Anal., 31 (2000), 1144.  doi: 10.1137/S003614109834394X.  Google Scholar [9] D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data,, Indiana Univ. Math. J., 41 (1992), 1225.  doi: 10.1512/iumj.1992.41.41060.  Google Scholar [10] D. Hoff and H. K. Jenssen, Symmetric nonbarotropic flows with large data and forces,, Arch. Rational Mech. Anal., 173 (2004), 297.  doi: 10.1007/s00205-004-0318-5.  Google Scholar [11] F. Jiang and Z. Tan, On the domain dependence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow,, Math. Meth. Appl. Sci., 32 (2009), 2350.  doi: 10.1002/mma.1138.  Google Scholar [12] S. Jiang and P. Zhang, Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids,, J. Math. Pures Appl. (9), 82 (2003), 949.  doi: 10.1016/S0021-7824(03)00015-1.  Google Scholar [13] S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations,, Comm. Math. Phys., 215 (2001), 559.  doi: 10.1007/PL00005543.  Google Scholar [14] S. Jiang and P. Zhang, Remarks on weak solutions to the Navier-Stokes equations for 2-D compressible isothermal fluids with spherically symmetric initial data,, Indiana Univ. Math. J., 51 (2002), 345.  doi: 10.1512/iumj.2002.51.2264.  Google Scholar [15] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar [16] A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.   Google Scholar [17] A. Kufner, O. John and S. Fučik, "Function Spaces,", Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, (1977).   Google Scholar [18] P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models,", Oxford Lecture Series in Mathematics and its Applications, 10 (1998).   Google Scholar [19] J. Zhang, S. Jiang and F. Xie, Global weak solutions of an initial boundary value problem for screw pinches in plasma physics,, Math. Models Meth. Appl. Sci., 19 (2009), 833.  doi: 10.1142/S0218202509003644.  Google Scholar

show all references

##### References:
 [1] R. A. Adams and J. John, "Sobolev Space,", $2^{nd}$ edition, (2005).   Google Scholar [2] D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl. (9), 87 (2007), 57.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar [3] R. Erban, On the existence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow,, Math. Meth. Appl. Sci., 26 (2003), 489.  doi: 10.1002/mma.362.  Google Scholar [4] E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford Lecture Series in Mathematics and its Applications, 26 (2004).   Google Scholar [5] E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not integrable,, Comment. Math. Univ. Carolinae, 42 (2001), 83.   Google Scholar [6] E. Feireisl and A. Novotnỳ, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009).  doi: 10.1007/978-3-7643-8843-0.  Google Scholar [7] E. Feireisl, A. Novotnỳ and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.  doi: 10.1007/PL00000976.  Google Scholar [8] H. Frid and V. Shelukhin, Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry,, SIAM J. Math. Anal., 31 (2000), 1144.  doi: 10.1137/S003614109834394X.  Google Scholar [9] D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data,, Indiana Univ. Math. J., 41 (1992), 1225.  doi: 10.1512/iumj.1992.41.41060.  Google Scholar [10] D. Hoff and H. K. Jenssen, Symmetric nonbarotropic flows with large data and forces,, Arch. Rational Mech. Anal., 173 (2004), 297.  doi: 10.1007/s00205-004-0318-5.  Google Scholar [11] F. Jiang and Z. Tan, On the domain dependence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow,, Math. Meth. Appl. Sci., 32 (2009), 2350.  doi: 10.1002/mma.1138.  Google Scholar [12] S. Jiang and P. Zhang, Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids,, J. Math. Pures Appl. (9), 82 (2003), 949.  doi: 10.1016/S0021-7824(03)00015-1.  Google Scholar [13] S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations,, Comm. Math. Phys., 215 (2001), 559.  doi: 10.1007/PL00005543.  Google Scholar [14] S. Jiang and P. Zhang, Remarks on weak solutions to the Navier-Stokes equations for 2-D compressible isothermal fluids with spherically symmetric initial data,, Indiana Univ. Math. J., 51 (2002), 345.  doi: 10.1512/iumj.2002.51.2264.  Google Scholar [15] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar [16] A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.   Google Scholar [17] A. Kufner, O. John and S. Fučik, "Function Spaces,", Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, (1977).   Google Scholar [18] P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models,", Oxford Lecture Series in Mathematics and its Applications, 10 (1998).   Google Scholar [19] J. Zhang, S. Jiang and F. Xie, Global weak solutions of an initial boundary value problem for screw pinches in plasma physics,, Math. Models Meth. Appl. Sci., 19 (2009), 833.  doi: 10.1142/S0218202509003644.  Google Scholar
 [1] Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408 [2] Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 [3] Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352 [4] Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230 [5] Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 [6] Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 [7] Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 [8] Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 [9] Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 [10] Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 [11] Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 [12] Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348 [13] Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110 [14] José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 [15] Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 [16] Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 [17] Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 [18] Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083 [19] Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49 [20] Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

2019 Impact Factor: 1.338