# American Institute of Mathematical Sciences

2014, 34(2): 613-633. doi: 10.3934/dcds.2014.34.613

## Steady state analysis for a relaxed cross diffusion model

 1 INRIA Rhône Alpes (team DRACULA), Batiment CEI-1, 66 Boulevard NIELS BOHR, 69603 Villeurbanne cedex, France 2 Departamento de Ingeniería Matemática, Universidad de Chile, Blanco Encalada 2120, $5^o$ piso-Santiago, Chile

Received  September 2012 Revised  April 2013 Published  August 2013

In this article we study the existence the existence of nonconstant steady state solutions for the following relaxed cross-diffusion system $$\left\lbrace\begin{array}{l} \partial_t u-\Delta[a(\tilde v)u]=0,\;\text{ in } (0,\infty)\times\Omega,\\ \partial_t v-\Delta[b(\tilde u)v]=0,\;\text{ in } (0,\infty)\times\Omega,\\ -\delta\Delta \tilde u+\tilde u=u,\;\text{ in }\Omega,\\ -\delta\Delta \tilde v+\tilde v=v,\;\text{ in }\Omega,\\ \partial_n u=\partial_n v=\partial\tilde u=\partial_n\tilde u=0,\;\text{ on } (0,\infty) \times \partial\Omega, \end{array}\right.$$ with $\Omega$ a bounded smooth domain, $n$ the outer unit normal to $\partial\Omega$, $\delta>0$ denotes the relaxation parameter. The functions $a(\tilde v)$, $b(\tilde u)$ account for nonlinear cross-diffusion, being $a(\tilde v)=1+{\tilde v}^\gamma$, $b(\tilde u)=1+{\tilde u}^\eta$ with $\gamma, \eta >1$ a model example. We give conditions for the stability of constant steady state solutions and we prove that under suitable conditions Turing patterns arise considering $\delta$ as a bifurcation parameter.
Citation: Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613
##### References:
 [1] H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems,, Differential Integral Equations, 3 (1990), 13. [2] M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame, Conservative cross diffusions and pattern formation through relaxation,, Journal de Mathmatiques Pures et Appliques (9), 92 (2009), 651. doi: 10.1016/j.matpur.2009.05.003. [3] L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion,, J. Differential Equations, 224 (2006), 39. doi: 10.1016/j.jde.2005.08.002. [4] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, Journal of Functional Analysis, 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. [5] L. Desvillettes and F. Conforto, Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross diffusions,, CMLA2009-34, (2009), 2009. [6] L. Desvillettes, K. Fellner, M. Pierre and J. Vovelle, Global existence for quadratic systems of reaction-diffusion,, Adv. Nonlinear Stud., 7 (2007), 491. [7] P. Deuring, An initial-boundary-value problem for a certain density-dependent diffusion system,, Mathematische Zeitschrift, 194 (1987), 375. doi: 10.1007/BF01162244. [8] H. Izuhara and M. Mimura, Reaction-diffusion system approximation to the cross-diffusion competition system,, Hiroshima Math. J., 38 (2008), 315. [9] T. Lepoutre, M. Pierre and G. Rolland, Global well-posedness of a conservative relaxed cross diffusion system,, SIAM Journal on Mathematical Analysis, 44 (2012), 1674. doi: 10.1137/110848839. [10] M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49. doi: 10.1007/BF00276035. [11] L. Nirenberg, Topics in nonlinear functional analysis,, Chapter 6 by E. Zehnder, 6 (1974). [12] M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass,, SIAM Rev., 42 (2000), 93. doi: 10.1137/S0036144599359735. [13] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theoret. Biol., 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3. [14] Y. Wang, The global existence of solutions for a cross-diffusion system,, Acta Math. Appl. Sin. Engl. Ser., 21 (2005), 519. doi: 10.1007/s10255-005-0260-9.

show all references

##### References:
 [1] H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems,, Differential Integral Equations, 3 (1990), 13. [2] M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame, Conservative cross diffusions and pattern formation through relaxation,, Journal de Mathmatiques Pures et Appliques (9), 92 (2009), 651. doi: 10.1016/j.matpur.2009.05.003. [3] L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion,, J. Differential Equations, 224 (2006), 39. doi: 10.1016/j.jde.2005.08.002. [4] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, Journal of Functional Analysis, 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. [5] L. Desvillettes and F. Conforto, Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross diffusions,, CMLA2009-34, (2009), 2009. [6] L. Desvillettes, K. Fellner, M. Pierre and J. Vovelle, Global existence for quadratic systems of reaction-diffusion,, Adv. Nonlinear Stud., 7 (2007), 491. [7] P. Deuring, An initial-boundary-value problem for a certain density-dependent diffusion system,, Mathematische Zeitschrift, 194 (1987), 375. doi: 10.1007/BF01162244. [8] H. Izuhara and M. Mimura, Reaction-diffusion system approximation to the cross-diffusion competition system,, Hiroshima Math. J., 38 (2008), 315. [9] T. Lepoutre, M. Pierre and G. Rolland, Global well-posedness of a conservative relaxed cross diffusion system,, SIAM Journal on Mathematical Analysis, 44 (2012), 1674. doi: 10.1137/110848839. [10] M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49. doi: 10.1007/BF00276035. [11] L. Nirenberg, Topics in nonlinear functional analysis,, Chapter 6 by E. Zehnder, 6 (1974). [12] M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass,, SIAM Rev., 42 (2000), 93. doi: 10.1137/S0036144599359735. [13] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theoret. Biol., 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3. [14] Y. Wang, The global existence of solutions for a cross-diffusion system,, Acta Math. Appl. Sin. Engl. Ser., 21 (2005), 519. doi: 10.1007/s10255-005-0260-9.
 [1] Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133 [2] Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 [3] Dan Liu, Shigui Ruan, Deming Zhu. Bifurcation analysis in models of tumor and immune system interactions. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 151-168. doi: 10.3934/dcdsb.2009.12.151 [4] Yoichi Enatsu, Yukihiko Nakata. Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences & Engineering, 2014, 11 (4) : 785-805. doi: 10.3934/mbe.2014.11.785 [5] Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063 [6] Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031 [7] Napoleon Bame, Samuel Bowong, Josepha Mbang, Gauthier Sallet, Jean-Jules Tewa. Global stability analysis for SEIS models with n latent classes. Mathematical Biosciences & Engineering, 2008, 5 (1) : 20-33. doi: 10.3934/mbe.2008.5.20 [8] Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 635-642. doi: 10.3934/dcdsb.2004.4.635 [9] Kousuke Kuto, Yoshio Yamada. On limit systems for some population models with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2745-2769. doi: 10.3934/dcdsb.2012.17.2745 [10] Zvia Agur, L. Arakelyan, P. Daugulis, Y. Ginosar. Hopf point analysis for angiogenesis models. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 29-38. doi: 10.3934/dcdsb.2004.4.29 [11] L.R. Ritter, Akif Ibragimov, Jay R. Walton, Catherine J. McNeal. Stability analysis using an energy estimate approach of a reaction-diffusion model of atherogenesis. Conference Publications, 2009, 2009 (Special) : 630-639. doi: 10.3934/proc.2009.2009.630 [12] Huan Su, Pengfei Wang, Xiaohua Ding. Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 253-269. doi: 10.3934/dcdsb.2016.21.253 [13] Shengji Li, Chunmei Liao, Minghua Li. Stability analysis of parametric variational systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 317-331. doi: 10.3934/naco.2011.1.317 [14] Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035 [15] Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks & Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773 [16] J. Leonel Rocha, Sandra M. Aleixo. Dynamical analysis in growth models: Blumberg's equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 783-795. doi: 10.3934/dcdsb.2013.18.783 [17] Yang Kuang, John D. Nagy, James J. Elser. Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 221-240. doi: 10.3934/dcdsb.2004.4.221 [18] Zhouchen Lin. A review on low-rank models in data analysis. Big Data & Information Analytics, 2016, 1 (2&3) : 139-161. doi: 10.3934/bdia.2016001 [19] Jun Zhou. Bifurcation analysis of a diffusive plant-wrack model with tide effect on the wrack. Mathematical Biosciences & Engineering, 2016, 13 (4) : 857-885. doi: 10.3934/mbe.2016021 [20] Hui Cao, Yicang Zhou, Zhien Ma. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1399-1417. doi: 10.3934/mbe.2013.10.1399

2016 Impact Factor: 1.099