2014, 34(3): 1121-1130. doi: 10.3934/dcds.2014.34.1121

Integrability of nonholonomically coupled oscillators

1. 

Department of Mathematical Sciences, Chalmers University of Technology, Sweden

2. 

Department of Mathematics, University of Bergen, Norway

Received  December 2012 Revised  February 2013 Published  August 2013

We study a family of nonholonomic mechanical systems. These systems consist of harmonic oscillators coupled through nonholonomic constraints. The family includes the contact oscillator, which has been used as a test problem for numerical methods for nonholonomic mechanics. The systems under study constitute simple models for continuously variable transmission gearboxes.
    The main result is that each system in the family is integrable reversible with respect to the canonical reversibility map on the cotangent bundle. By using reversible Kolmogorov--Arnold--Moser theory, we then establish preservation of invariant tori for reversible perturbations. This result explains previous numerical observations, that some discretisations of the contact oscillator have favourable structure preserving properties.
Citation: Klas Modin, Olivier Verdier. Integrability of nonholonomically coupled oscillators. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1121-1130. doi: 10.3934/dcds.2014.34.1121
References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", Springer-Verlag, (1989).

[2]

V. I. Arnold, V. Kozlov, A. I. Neishtadt and E. Khukhro, "Mathematical Aspects of Classical and Celestial Mechanics,", Springer-Verlag, (2006). doi: 10.1007/978-3-540-48926-9.

[3]

V. I. Arnold, "Ordinary Differential Equations,", Springer-Verlag, (2006).

[4]

A. M. Bloch, "Nonholonomic Mechanics and Control,", Springer-Verlag, (2003). doi: 10.1007/b97376.

[5]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in non-holonomic systems,, Dynamical Systems, 24 (2009), 187. doi: 10.1080/14689360802609344.

[6]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,", Springer-Verlag, (2002). doi: 10.1007/b84020.

[7]

M. de León, J. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics,, J. Geom. Mech., 2 (2010), 159. doi: 10.3934/jgm.2010.2.159.

[8]

S. Ferraro, D. Iglesias and D. Martín de Diego, Momentum and energy preserving integrators for nonholonomic dynamics,, Nonlinearity, 21 (2008), 1911. doi: 10.1088/0951-7715/21/8/009.

[9]

S. J. Ferraro, D. Iglesias-Ponte and D. Martín de Diego, Numerical and geometric aspects of the nonholonomic Shake and Rattle methods,, Discrete Contin. Dyn. Syst., (2009), 220.

[10]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration,", Springer-Verlag, (2006). doi: 10.1007/3-540-30666-8.

[11]

D. Iglesias-Ponte, M. de León and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems,, J. Phys. A, 41 (2008). doi: 10.1088/1751-8113/41/1/015205.

[12]

M. Kobilarov, D. Martín de Diego and S. Ferraro, Simulating nonholonomic dynamics,, Bol. Soc. Esp. Mat. Apl. S$\vec{\e}$MA, 50 (2010), 61.

[13]

M. Kobilarov, J. E. Marsden and G. S. Sukhatme, Geometric discretization of nonholonomic systems with symmetries,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 61. doi: 10.3934/dcdss.2010.3.61.

[14]

V. V. Kozlov, On the integration theory of equations of nonholonomic mechanics,, Regul. Chaotic Dyn., 7 (2002), 161. doi: 10.1070/RD2002v007n02ABEH000203.

[15]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,", Springer-Verlag, (1999). doi: 10.1007/978-0-387-21792-5.

[16]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Sci., 16 (2006), 283. doi: 10.1007/s00332-005-0698-1.

[17]

T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization,, J. Geom. Phys., 61 (2011), 1263. doi: 10.1016/j.geomphys.2011.02.015.

[18]

M. B. Sevryuk, KAM-stable Hamiltonians,, J. Dynam. Control Systems, 1 (1995), 351. doi: 10.1007/BF02269374.

[19]

M. B. Sevryuk, The finite-dimensional reversible KAM theory,, Phys. D, 112 (1998), 132. doi: 10.1016/S0167-2789(97)00207-8.

[20]

Z. Shang, KAM theorem of symplectic algorithms for Hamiltonian systems,, Numer. Math., 83 (1999), 477. doi: 10.1007/s002110050460.

[21]

Z. Shang, A note on the KAM theorem for symplectic mappings,, J. Dynam. Differential Equations, 12 (2000), 357. doi: 10.1023/A:1009068425415.

show all references

References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", Springer-Verlag, (1989).

[2]

V. I. Arnold, V. Kozlov, A. I. Neishtadt and E. Khukhro, "Mathematical Aspects of Classical and Celestial Mechanics,", Springer-Verlag, (2006). doi: 10.1007/978-3-540-48926-9.

[3]

V. I. Arnold, "Ordinary Differential Equations,", Springer-Verlag, (2006).

[4]

A. M. Bloch, "Nonholonomic Mechanics and Control,", Springer-Verlag, (2003). doi: 10.1007/b97376.

[5]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in non-holonomic systems,, Dynamical Systems, 24 (2009), 187. doi: 10.1080/14689360802609344.

[6]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,", Springer-Verlag, (2002). doi: 10.1007/b84020.

[7]

M. de León, J. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics,, J. Geom. Mech., 2 (2010), 159. doi: 10.3934/jgm.2010.2.159.

[8]

S. Ferraro, D. Iglesias and D. Martín de Diego, Momentum and energy preserving integrators for nonholonomic dynamics,, Nonlinearity, 21 (2008), 1911. doi: 10.1088/0951-7715/21/8/009.

[9]

S. J. Ferraro, D. Iglesias-Ponte and D. Martín de Diego, Numerical and geometric aspects of the nonholonomic Shake and Rattle methods,, Discrete Contin. Dyn. Syst., (2009), 220.

[10]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration,", Springer-Verlag, (2006). doi: 10.1007/3-540-30666-8.

[11]

D. Iglesias-Ponte, M. de León and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems,, J. Phys. A, 41 (2008). doi: 10.1088/1751-8113/41/1/015205.

[12]

M. Kobilarov, D. Martín de Diego and S. Ferraro, Simulating nonholonomic dynamics,, Bol. Soc. Esp. Mat. Apl. S$\vec{\e}$MA, 50 (2010), 61.

[13]

M. Kobilarov, J. E. Marsden and G. S. Sukhatme, Geometric discretization of nonholonomic systems with symmetries,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 61. doi: 10.3934/dcdss.2010.3.61.

[14]

V. V. Kozlov, On the integration theory of equations of nonholonomic mechanics,, Regul. Chaotic Dyn., 7 (2002), 161. doi: 10.1070/RD2002v007n02ABEH000203.

[15]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,", Springer-Verlag, (1999). doi: 10.1007/978-0-387-21792-5.

[16]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Sci., 16 (2006), 283. doi: 10.1007/s00332-005-0698-1.

[17]

T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization,, J. Geom. Phys., 61 (2011), 1263. doi: 10.1016/j.geomphys.2011.02.015.

[18]

M. B. Sevryuk, KAM-stable Hamiltonians,, J. Dynam. Control Systems, 1 (1995), 351. doi: 10.1007/BF02269374.

[19]

M. B. Sevryuk, The finite-dimensional reversible KAM theory,, Phys. D, 112 (1998), 132. doi: 10.1016/S0167-2789(97)00207-8.

[20]

Z. Shang, KAM theorem of symplectic algorithms for Hamiltonian systems,, Numer. Math., 83 (1999), 477. doi: 10.1007/s002110050460.

[21]

Z. Shang, A note on the KAM theorem for symplectic mappings,, J. Dynam. Differential Equations, 12 (2000), 357. doi: 10.1023/A:1009068425415.

[1]

Hernán Cendra, Viviana A. Díaz. Lagrange-d'alembert-poincaré equations by several stages. Journal of Geometric Mechanics, 2018, 10 (1) : 1-41. doi: 10.3934/jgm.2018001

[2]

Luca Biasco, Luigi Chierchia. Exponential stability for the resonant D'Alembert model of celestial mechanics. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 569-594. doi: 10.3934/dcds.2005.12.569

[3]

Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[4]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[5]

Alessandra Celletti. Some KAM applications to Celestial Mechanics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 533-544. doi: 10.3934/dcdss.2010.3.533

[6]

Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267

[7]

Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019

[8]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[9]

Miguel Rodríguez-Olmos. Book review: Geometric mechanics and symmetry, by Darryl D. Holm, Tanya Schmah and Cristina Stoica. Journal of Geometric Mechanics, 2009, 1 (4) : 483-488. doi: 10.3934/jgm.2009.1.483

[10]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[11]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[12]

Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220

[13]

Kurt Ehlers. Geometric equivalence on nonholonomic three-manifolds. Conference Publications, 2003, 2003 (Special) : 246-255. doi: 10.3934/proc.2003.2003.246

[14]

Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57

[15]

Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237

[16]

Luis C. garcía-Naranjo, Fernando Jiménez. The geometric discretisation of the Suslov problem: A case study of consistency for nonholonomic integrators. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4249-4275. doi: 10.3934/dcds.2017182

[17]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092

[18]

Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413

[19]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

[20]

Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]