2013, 10(5&6): 1265-1279. doi: 10.3934/mbe.2013.10.1265

Life history traits of Sirex Noctilio F. (Hymenoptera: Siricidae) can explain outbreaks independently of environmental factors

1. 

Instituto de Investigación en Energías no Convencionales, INENCO, CONICET, Universidad Nacional de Salta, Av. Bolivia 5150, 4400 Salta,, Argentina

2. 

Grupo de Ecología de Poblaciones de Insectos, INTA EEA Bariloche, Modesta Victoria 1500, 8400 Bariloche, Argentina

3. 

Centro de Estudios Parasitológicos y de Vectores (CEPAVE), Universidad Nacional de La Plata, Calle 2 No. 584, 1900 La Plata, Argentina

Received  September 2012 Revised  April 2013 Published  August 2013

The woodwasp Sirex noctilio is a major pest of pine plantations worldwide. Economically significant damage is however limited to outbreak populations. To understand what determines outbreaks dynamics in this species, we developed an individual based model for a wasp population developing within a pine plantation. We show that outbreaks may be the result of the insect's life history. Specifically we show that limited dispersal may not only increase population persistence but also create the conditions for eruptive dynamics. When the probability of long distance dispersal is greater than zero, but relatively small ($P_{LDD}$= 0.1) large outbreaks are the norm, with all of the suitable trees dead at the end of the simulation. For $P_{LDD}$= 0 (only local dispersal allowed) outbreaks are smaller in size, and in some cases not well defined and spread over longer periods. For $P_{LDD}$= 1 (only long distance dispersal allowed), the frequency of local population extinction (without outbreaks) increases significantly. Aggregated attacks may induce physiological changes in the trees which could allow other wasps to detect them. These changes may in turn trigger an outbreak. In contrast, healthy, vigorous trees are not suitable for wasp oviposition. In our model the density of suitable trees (healthy trees but yet suitable for oviposition) are a key factor determining population persistence before outbreaks. From an applied perspective, our results emphasize the importance of adequate plantation management in preventing woodwasp infestation.
Citation: Juan Pablo Aparicio, Juan Carlos Corley, Jorge Eduardo Rabinovich. Life history traits of Sirex Noctilio F. (Hymenoptera: Siricidae) can explain outbreaks independently of environmental factors. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1265-1279. doi: 10.3934/mbe.2013.10.1265
References:
[1]

A. A. Berryman, "Forest Insects. Principles and Practice of Population Management,", Population Ecology, (1986). Google Scholar

[2]

A. A. Berryman, The theory and classification of outbreaks,, in, (1987). Google Scholar

[3]

O. A. Bruzzone, J. M. Villacide, C. Bernstein and J. C. Corley, Flight variability in the woodwasp Sirex noctilio (Hymenoptera: Siricidae): An analysis of flight data using wavelets,, J. Exp. Biol., 212 (2009), 731. doi: 10.1242/jeb.022517. Google Scholar

[4]

N. Capuccino, H. Damman and J. F. Dubuc, Spatial behavior and temporal dynamics of outbreak and nonoutbreak species,, in, (1995), 65. doi: 10.1016/B978-012159270-7/50005-1. Google Scholar

[5]

W. E. Cole and G. D. Amman, Mountain Pine Beetle Dynamics in Lodgepole Pine Forests. Part I: Course of an Infestation,, USDA Forest Service, (1980). Google Scholar

[6]

J. C. Corley and M. A. Jervis, Forest Pest Management. A global challenge,, International Journal of Pest Management, 58 (2012), 193. doi: 10.1080/09670874.2012.701782. Google Scholar

[7]

J. C. Corley, J. M. Villacide and O. A. Bruzzone, Spatial dynamics of woodwasp (Sirex noctilio F., Hymenoptera:Siricidae) attacks within a pine plantation of Patagonia (Argentina),, Entomologia Experimentalis et Applicata, 125 (2007), 231. Google Scholar

[8]

J. C. Corley and J. M. Villacide, Population dynamics of Sirex noctilio: Influence of diapause, spatial aggregationand flight potential on woodwasp outbreaks and spread,, in, (2012). Google Scholar

[9]

M. P. Coutts, The mechanism of pathogenicity of Sirex noctilio on Pinus radiata. I. Effects of the symbiotic fungus Amylostereum sp. (Thelophoraceae),, Australian Journal of Biological Science, 22 (1969), 915. Google Scholar

[10]

M. P. Coutts and J. E. Dolezal, Emplacement of fungal spores by the woodwasp, Sirex noctilio, during oviposition,, Forest Science, 15 (1969), 412. Google Scholar

[11]

J. Esper, U. Buntgen, D. C. Frank, D. Nievergelt and A. Liebhold, 1200 years of regular outbreaks in alpine insects,, Proceedings of the Royal Society B, 274 (2007), 671. doi: 10.1098/rspb.2006.0191. Google Scholar

[12]

D. A. Gansner, D. A. Drake, S. L. Arner, R. R. Hershey and S. L. King, Defoliation potential of gypsy moth,, Res. Note NE-354, (1993). Google Scholar

[13]

E. R. Hoebeke, D. A. Haugen and R. A. Haack, Sirex noctilio: Discovery of a Palearctic siricid woodwasp in New York,, Newsletter of the Michigan Entomological Society, 50 (2005), 24. Google Scholar

[14]

A. F. Hunter, Ecology, life history and Phylogeny of outbreak and nonoutbreak species,, in, (1995). doi: 10.1016/B978-012159270-7/50004-X. Google Scholar

[15]

B. P. Hurley, B. Slippers and M. J. Wingfield, A comparison of control results for the alien invasive woodwasp, Sirex noctilio, in the southern hemisphere,, Agricultural and Forest Entomology, 9 (2007), 159. doi: 10.1111/j.1461-9563.2007.00340.x. Google Scholar

[16]

E. T. Iede, S. R. Penteado and J. L. Bisol, Primeiro registro de ataque de Sirex noctilio em Pinus taeda no Brasil,, EMBRAPA-CNPF, (1988). Google Scholar

[17]

J. Koricheva, S. Larsson and E. Haukioja, Insect performance on experimentally stressed woody plants: A meta-analysis,, Annual Review of Entomology, 43 (1998), 196. doi: 10.1146/annurev.ento.43.1.195. Google Scholar

[18]

S. Kucherov, The reconstruction on Lymantria dispar outbreaks by dendrochronological methods in the south Urals,, in, (1991), 205. Google Scholar

[19]

A. Liebhold, E. Luzader, J. Halverson and G. Elmes, The spatial dynamics of invasions by exotic forest pests,, in, (1993), 125. Google Scholar

[20]

J. A. Logan, P. V. Bolstad, B. J. Bentz and D. L. Perkins, Assessing the effects of changing climate on Mountain Pine beetle dynamics,, in, (1995), 25. Google Scholar

[21]

J. Lubchenco, A. M. Olson, L. B. Brubaker, S. R. Carpenter, M. M. Holland, S. P. Hubbell, S. A. Levin, J. A. Macmahon, P. A. Matson, J. M. Melillo, H. A. Mooney, C. H. Peterson, H. R. Pulliam, L. A. Real, P. J. Regal and P. G. Risser, The Sustainable Biosphere Initiative: An ecological research agenda,, Ecology, 72 (1991), 371. doi: 10.2307/2937183. Google Scholar

[22]

D. Ludwig, D. D. Jones and C. S Holling, Qualitative analysis of insect outbreak systems: The spruce budworm and forest,, Journal of Animal Ecology, 47 (1978), 315. doi: 10.2307/3939. Google Scholar

[23]

J. L. Madden, Oviposition behavior of the woodwasp Sirex noctilio F.,, Australian Journal of Zoology, 22 (1974), 341. doi: 10.1071/ZO9740341. Google Scholar

[24]

J. L. Madden, Physiological aspects of host tree favourability for the woodwasp, Sirex noctilio f.,, Proc. Ecol. Soc. Aust., 3 (1968), 147. Google Scholar

[25]

J. L. Madden, Sirex in Australasia,, in, (1988), 407. doi: 10.1007/978-1-4899-0789-9_20. Google Scholar

[26]

M.-A. Moravie, A. C. Davison, D. Pasquier and P.-J. Charmillot, Bayesian forecasting of grape moth emergence,, Ecological Modelling, 197 (2006), 478. doi: 10.1016/j.ecolmodel.2006.03.030. Google Scholar

[27]

F. D. Morgan and N. C. Stewart, The effects of Rhyssa persuasoria (L.) on the population of Sirex noctilio (F.),, Transaction of the Royal Society of New Zealand, 8 (1966), 31. Google Scholar

[28]

R. R. Mason, D. W. Scott, M. D. Loewen and H. G. Paul, Recurrent outbreak of the Douglas-fir tussock moth in the Malheur National Forest: A case history,, Gen. Tech. Rep. PNW-GTR-402, (1998). Google Scholar

[29]

F. G. Neumann and G. Minko, The sirex woodwasp in Australian radiata pine plantations,, Australian Forestry, 44 (1981), 46. Google Scholar

[30]

R. A. Obedzinski, J. M. Schmid, S. A. Mata, W. K. Olsen and R. R. Kessler, Growth of Ponderosa pine stands in relation to mountain pine beetle susceptibility,, Gen. Tech. Rep. RMRS-GTR-28, (1999). Google Scholar

[31]

M. Peltonen, A. M. Liebhold, O. N. Bjrnstad and D. W. Williams, Spatial synchrony in forest insect outbreaks: Roles of regional stochasticity and dispersal,, Ecology, 83 (2002), 3120. Google Scholar

[32]

G. B. Rawlings and N. M. Wilson, Sirex noctilio as a beneficial and destructive insect to Pinus radiata,, New Zealand Journal of Forestry, 6 (1949), 1. Google Scholar

[33]

J. D. Reeve, Environmental varibality, migration and persistence in host parasitoid systems,, American Naturalist, 32 (1988), 810. Google Scholar

[34]

T. Royama, "Analytical Population Dynamics,", Chapman & Hall, (1992). Google Scholar

[35]

K. Ryan and B. Hurley, Life History and Biology of Sirex noctilio,, in, (2012), 15. Google Scholar

[36]

A. V. Selikhovkin, D. L. Musolin and T. E. Sergeeva, Defoliating insects: history of outbreaks in the coniferous forests of Russia,, in, (1998). Google Scholar

[37]

A. A. Sharov, Integrating host, natural enemy, and other processes in population models of the pine sawfly,, in, (1991), 187. Google Scholar

[38]

A. A. Sharov, Modeling insect dynamics,, in, (1996), 6. Google Scholar

[39]

J. P. Spradbery and A. A. Kirk, Experimental studies on the responses of European siricid woodwasps to host trees,, Annals of Applied Biology, 98 (1981), 179. doi: 10.1111/j.1744-7348.1981.tb00751.x. Google Scholar

[40]

J. P. Spradbery, The oviposition biology of siricid wasps in Europe,, Ecological Entomology, 2 (1977), 224. Google Scholar

[41]

J. P. Spradbery and A. A. Kirk, Aspects of the ecology of siricid woodwasps (Hymenoptera: Siricidae) in Europe, North Africa and Turkey with special reference to the biological control of Sirex noctilio F. in Australia,, Bulletin of Entomological Research, 68 (1978), 341. doi: 10.1017/S0007485300009330. Google Scholar

[42]

K. L. Taylor, Evaluation of insect parasitoids of Sirex noctilio (Hymenoptera: Siricidae) in Tasmania,, Oecologia, 32 (1978), 1. doi: 10.1007/BF00344686. Google Scholar

[43]

K. L. Taylor, The Sirex woodwasp: Ecology and control of an introduced forest insect,, in, (1981), 213. Google Scholar

[44]

O. Tenow, A. C. Nilssen, B. Holmgren and F. Elverum, An insect (Argyresthia retinella, Lep., Yponeumonidae) outbreack in northern birch forests, released by climatic changes?,, Journal of Applied Ecology, 36 (1999), 111. Google Scholar

[45]

G. D. Tribe, The woodwasp Sirex noctilio Fabricius (Hymenoptera: Siricidae), a pest of Pinus species, now established in South Africa,, African Entomology, 3 (1995), 216. Google Scholar

[46]

G. C. Varley and G. R. Gradwell, Population models for the winter moth, in, (1968), 132. Google Scholar

[47]

J. M. Villacide and J. C. Corley, Ecology of the woodwasp Sirex noctilio: Tackling the challenge of successful pest management,, International Journal of Pest Management, 58 (2012), 249. Google Scholar

[48]

R. M. Weseloh, Predicting Gypsy moth defoliation using spatially explicit information,, in, (1998). Google Scholar

[49]

J. W. Wilder, I. Christie and J. J. Colbert, Modelling of two-dimensional spatial effects on the spread of forest pests and their management,, Ecological Modelling, 82 (1995), 287. doi: 10.1016/0304-3800(95)00097-F. Google Scholar

[50]

Q. B. Zhang and R. I. Alfaro, Spatial synchrony of the two-year cycle budworm outbreaks in Central British Columbia, Canada,, Oikos, 102 (2003), 146. doi: 10.1034/j.1600-0706.2003.12169.x. Google Scholar

show all references

References:
[1]

A. A. Berryman, "Forest Insects. Principles and Practice of Population Management,", Population Ecology, (1986). Google Scholar

[2]

A. A. Berryman, The theory and classification of outbreaks,, in, (1987). Google Scholar

[3]

O. A. Bruzzone, J. M. Villacide, C. Bernstein and J. C. Corley, Flight variability in the woodwasp Sirex noctilio (Hymenoptera: Siricidae): An analysis of flight data using wavelets,, J. Exp. Biol., 212 (2009), 731. doi: 10.1242/jeb.022517. Google Scholar

[4]

N. Capuccino, H. Damman and J. F. Dubuc, Spatial behavior and temporal dynamics of outbreak and nonoutbreak species,, in, (1995), 65. doi: 10.1016/B978-012159270-7/50005-1. Google Scholar

[5]

W. E. Cole and G. D. Amman, Mountain Pine Beetle Dynamics in Lodgepole Pine Forests. Part I: Course of an Infestation,, USDA Forest Service, (1980). Google Scholar

[6]

J. C. Corley and M. A. Jervis, Forest Pest Management. A global challenge,, International Journal of Pest Management, 58 (2012), 193. doi: 10.1080/09670874.2012.701782. Google Scholar

[7]

J. C. Corley, J. M. Villacide and O. A. Bruzzone, Spatial dynamics of woodwasp (Sirex noctilio F., Hymenoptera:Siricidae) attacks within a pine plantation of Patagonia (Argentina),, Entomologia Experimentalis et Applicata, 125 (2007), 231. Google Scholar

[8]

J. C. Corley and J. M. Villacide, Population dynamics of Sirex noctilio: Influence of diapause, spatial aggregationand flight potential on woodwasp outbreaks and spread,, in, (2012). Google Scholar

[9]

M. P. Coutts, The mechanism of pathogenicity of Sirex noctilio on Pinus radiata. I. Effects of the symbiotic fungus Amylostereum sp. (Thelophoraceae),, Australian Journal of Biological Science, 22 (1969), 915. Google Scholar

[10]

M. P. Coutts and J. E. Dolezal, Emplacement of fungal spores by the woodwasp, Sirex noctilio, during oviposition,, Forest Science, 15 (1969), 412. Google Scholar

[11]

J. Esper, U. Buntgen, D. C. Frank, D. Nievergelt and A. Liebhold, 1200 years of regular outbreaks in alpine insects,, Proceedings of the Royal Society B, 274 (2007), 671. doi: 10.1098/rspb.2006.0191. Google Scholar

[12]

D. A. Gansner, D. A. Drake, S. L. Arner, R. R. Hershey and S. L. King, Defoliation potential of gypsy moth,, Res. Note NE-354, (1993). Google Scholar

[13]

E. R. Hoebeke, D. A. Haugen and R. A. Haack, Sirex noctilio: Discovery of a Palearctic siricid woodwasp in New York,, Newsletter of the Michigan Entomological Society, 50 (2005), 24. Google Scholar

[14]

A. F. Hunter, Ecology, life history and Phylogeny of outbreak and nonoutbreak species,, in, (1995). doi: 10.1016/B978-012159270-7/50004-X. Google Scholar

[15]

B. P. Hurley, B. Slippers and M. J. Wingfield, A comparison of control results for the alien invasive woodwasp, Sirex noctilio, in the southern hemisphere,, Agricultural and Forest Entomology, 9 (2007), 159. doi: 10.1111/j.1461-9563.2007.00340.x. Google Scholar

[16]

E. T. Iede, S. R. Penteado and J. L. Bisol, Primeiro registro de ataque de Sirex noctilio em Pinus taeda no Brasil,, EMBRAPA-CNPF, (1988). Google Scholar

[17]

J. Koricheva, S. Larsson and E. Haukioja, Insect performance on experimentally stressed woody plants: A meta-analysis,, Annual Review of Entomology, 43 (1998), 196. doi: 10.1146/annurev.ento.43.1.195. Google Scholar

[18]

S. Kucherov, The reconstruction on Lymantria dispar outbreaks by dendrochronological methods in the south Urals,, in, (1991), 205. Google Scholar

[19]

A. Liebhold, E. Luzader, J. Halverson and G. Elmes, The spatial dynamics of invasions by exotic forest pests,, in, (1993), 125. Google Scholar

[20]

J. A. Logan, P. V. Bolstad, B. J. Bentz and D. L. Perkins, Assessing the effects of changing climate on Mountain Pine beetle dynamics,, in, (1995), 25. Google Scholar

[21]

J. Lubchenco, A. M. Olson, L. B. Brubaker, S. R. Carpenter, M. M. Holland, S. P. Hubbell, S. A. Levin, J. A. Macmahon, P. A. Matson, J. M. Melillo, H. A. Mooney, C. H. Peterson, H. R. Pulliam, L. A. Real, P. J. Regal and P. G. Risser, The Sustainable Biosphere Initiative: An ecological research agenda,, Ecology, 72 (1991), 371. doi: 10.2307/2937183. Google Scholar

[22]

D. Ludwig, D. D. Jones and C. S Holling, Qualitative analysis of insect outbreak systems: The spruce budworm and forest,, Journal of Animal Ecology, 47 (1978), 315. doi: 10.2307/3939. Google Scholar

[23]

J. L. Madden, Oviposition behavior of the woodwasp Sirex noctilio F.,, Australian Journal of Zoology, 22 (1974), 341. doi: 10.1071/ZO9740341. Google Scholar

[24]

J. L. Madden, Physiological aspects of host tree favourability for the woodwasp, Sirex noctilio f.,, Proc. Ecol. Soc. Aust., 3 (1968), 147. Google Scholar

[25]

J. L. Madden, Sirex in Australasia,, in, (1988), 407. doi: 10.1007/978-1-4899-0789-9_20. Google Scholar

[26]

M.-A. Moravie, A. C. Davison, D. Pasquier and P.-J. Charmillot, Bayesian forecasting of grape moth emergence,, Ecological Modelling, 197 (2006), 478. doi: 10.1016/j.ecolmodel.2006.03.030. Google Scholar

[27]

F. D. Morgan and N. C. Stewart, The effects of Rhyssa persuasoria (L.) on the population of Sirex noctilio (F.),, Transaction of the Royal Society of New Zealand, 8 (1966), 31. Google Scholar

[28]

R. R. Mason, D. W. Scott, M. D. Loewen and H. G. Paul, Recurrent outbreak of the Douglas-fir tussock moth in the Malheur National Forest: A case history,, Gen. Tech. Rep. PNW-GTR-402, (1998). Google Scholar

[29]

F. G. Neumann and G. Minko, The sirex woodwasp in Australian radiata pine plantations,, Australian Forestry, 44 (1981), 46. Google Scholar

[30]

R. A. Obedzinski, J. M. Schmid, S. A. Mata, W. K. Olsen and R. R. Kessler, Growth of Ponderosa pine stands in relation to mountain pine beetle susceptibility,, Gen. Tech. Rep. RMRS-GTR-28, (1999). Google Scholar

[31]

M. Peltonen, A. M. Liebhold, O. N. Bjrnstad and D. W. Williams, Spatial synchrony in forest insect outbreaks: Roles of regional stochasticity and dispersal,, Ecology, 83 (2002), 3120. Google Scholar

[32]

G. B. Rawlings and N. M. Wilson, Sirex noctilio as a beneficial and destructive insect to Pinus radiata,, New Zealand Journal of Forestry, 6 (1949), 1. Google Scholar

[33]

J. D. Reeve, Environmental varibality, migration and persistence in host parasitoid systems,, American Naturalist, 32 (1988), 810. Google Scholar

[34]

T. Royama, "Analytical Population Dynamics,", Chapman & Hall, (1992). Google Scholar

[35]

K. Ryan and B. Hurley, Life History and Biology of Sirex noctilio,, in, (2012), 15. Google Scholar

[36]

A. V. Selikhovkin, D. L. Musolin and T. E. Sergeeva, Defoliating insects: history of outbreaks in the coniferous forests of Russia,, in, (1998). Google Scholar

[37]

A. A. Sharov, Integrating host, natural enemy, and other processes in population models of the pine sawfly,, in, (1991), 187. Google Scholar

[38]

A. A. Sharov, Modeling insect dynamics,, in, (1996), 6. Google Scholar

[39]

J. P. Spradbery and A. A. Kirk, Experimental studies on the responses of European siricid woodwasps to host trees,, Annals of Applied Biology, 98 (1981), 179. doi: 10.1111/j.1744-7348.1981.tb00751.x. Google Scholar

[40]

J. P. Spradbery, The oviposition biology of siricid wasps in Europe,, Ecological Entomology, 2 (1977), 224. Google Scholar

[41]

J. P. Spradbery and A. A. Kirk, Aspects of the ecology of siricid woodwasps (Hymenoptera: Siricidae) in Europe, North Africa and Turkey with special reference to the biological control of Sirex noctilio F. in Australia,, Bulletin of Entomological Research, 68 (1978), 341. doi: 10.1017/S0007485300009330. Google Scholar

[42]

K. L. Taylor, Evaluation of insect parasitoids of Sirex noctilio (Hymenoptera: Siricidae) in Tasmania,, Oecologia, 32 (1978), 1. doi: 10.1007/BF00344686. Google Scholar

[43]

K. L. Taylor, The Sirex woodwasp: Ecology and control of an introduced forest insect,, in, (1981), 213. Google Scholar

[44]

O. Tenow, A. C. Nilssen, B. Holmgren and F. Elverum, An insect (Argyresthia retinella, Lep., Yponeumonidae) outbreack in northern birch forests, released by climatic changes?,, Journal of Applied Ecology, 36 (1999), 111. Google Scholar

[45]

G. D. Tribe, The woodwasp Sirex noctilio Fabricius (Hymenoptera: Siricidae), a pest of Pinus species, now established in South Africa,, African Entomology, 3 (1995), 216. Google Scholar

[46]

G. C. Varley and G. R. Gradwell, Population models for the winter moth, in, (1968), 132. Google Scholar

[47]

J. M. Villacide and J. C. Corley, Ecology of the woodwasp Sirex noctilio: Tackling the challenge of successful pest management,, International Journal of Pest Management, 58 (2012), 249. Google Scholar

[48]

R. M. Weseloh, Predicting Gypsy moth defoliation using spatially explicit information,, in, (1998). Google Scholar

[49]

J. W. Wilder, I. Christie and J. J. Colbert, Modelling of two-dimensional spatial effects on the spread of forest pests and their management,, Ecological Modelling, 82 (1995), 287. doi: 10.1016/0304-3800(95)00097-F. Google Scholar

[50]

Q. B. Zhang and R. I. Alfaro, Spatial synchrony of the two-year cycle budworm outbreaks in Central British Columbia, Canada,, Oikos, 102 (2003), 146. doi: 10.1034/j.1600-0706.2003.12169.x. Google Scholar

[1]

Komi Messan, Yun Kang. A two patch prey-predator model with multiple foraging strategies in predator: Applications to insects. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 947-976. doi: 10.3934/dcdsb.2017048

[2]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[3]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[4]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[5]

Vincent Delecroix. Divergent trajectories in the periodic wind-tree model. Journal of Modern Dynamics, 2013, 7 (1) : 1-29. doi: 10.3934/jmd.2013.7.1

[6]

Miaohua Jiang, Qiang Zhang. A coupled map lattice model of tree dispersion. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 83-101. doi: 10.3934/dcdsb.2008.9.83

[7]

Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Hybrid discrete-continuous model of invasive bladder cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 729-742. doi: 10.3934/mbe.2013.10.729

[8]

Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643

[9]

Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 629-634. doi: 10.3934/dcdsb.2004.4.629

[10]

Sergei Avdonin, Jonathan Bell. Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph. Inverse Problems & Imaging, 2015, 9 (3) : 645-659. doi: 10.3934/ipi.2015.9.645

[11]

Alberto Bressan, Michele Palladino. Well-posedness of a model for the growth of tree stems and vines. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2047-2064. doi: 10.3934/dcds.2018083

[12]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[13]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[14]

Chuang Xu. Strong Allee effect in a stochastic logistic model with mate limitation and stochastic immigration. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2321-2336. doi: 10.3934/dcdsb.2016049

[15]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[16]

Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang. Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1247-1274. doi: 10.3934/mbe.2014.11.1247

[17]

Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511

[18]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[19]

Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi. Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 883-904. doi: 10.3934/mbe.2018040

[20]

Yun Kang, Carlos Castillo-Chávez. A simple epidemiological model for populations in the wild with Allee effects and disease-modified fitness. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 89-130. doi: 10.3934/dcdsb.2014.19.89

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

[Back to Top]