-
Previous Article
The mathematical and theoretical biology institute - a model of mentorship through research
- MBE Home
- This Issue
-
Next Article
Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations
Dynamics of an age-of-infection cholera model
1. | Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2 |
2. | Department of Mathematics and Statistics, University of Victoria, Victoria, B.C., V8W 3R4, Canada |
3. | Department of Mathematics and Statistics, University of Victoria, Victoria B.C., Canada V8W 3P4 |
References:
[1] |
A. Alexanderian, M. K. Gobbert, K. R. Fister, H. Gaff, S. Lenhart and E. Schaefer, An age-structured model for the spread of epidemic cholera: Analysis and simulation, Nonlinear Anal. Real World Appl., 12 (2011), 3483-3498.
doi: 10.1016/j.nonrwa.2011.06.009. |
[2] |
F. Brauer, Age-of-infection and the final size relation, Math. Biosci. Eng., 5 (2008), 681-690.
doi: 10.3934/mbe.2008.5.681. |
[3] |
F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology," Second edition, Springer, New York, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[4] |
F. Brauer, C. Castillo-Chavez and Z. Feng, Discrete epidemic models, Math. Biosc. Eng., 7 (2010), 1-15.
doi: 10.3934/mbe.2010.7.1. |
[5] |
F. Brauer, P. van den Driessche and J. Wu, eds., "Mathematical Epidemiology," Lecture Notes in Math., Vol. 1945, Springer, Berlin, 2008.
doi: 10.1007/978-3-540-78911-6. |
[6] |
D. L. Chao, M. E. Halloran and I. M. Longini, Jr., Vaccination strategies for epidemic cholera in Haiti with implications for the developing world, Proc. Natl. Acad. Sci. USA, 108 (2011), 7081-7085.
doi: 10.1073/pnas.1102149108. |
[7] |
J. M. Cushing, "An Introduction to Structured Population Dynamics," CBMS-NSF Regional Conference Series in Applied Mathematics, 71, SIAM, Philadelphia, 1998.
doi: 10.1137/1.9781611970005. |
[8] |
M. Enserink, Haiti's outbreak is latest in cholera's new global assault, Science, 330 (2010), 738-739.
doi: 10.1126/science.330.6005.738. |
[9] |
D. M. Hartley, J. G. Morris, Jr. and D. L. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics? PLOS Med., 3 (2006), 63-69.
doi: 10.1371/journal.pmed.0030007. |
[10] |
G. Huang, E. Beretta and Y. Takeuchi, Global stability for epidemic model with constant latency and infectious periods, Math. Biosci. Eng., 9 (2012), 297-312.
doi: 10.3934/mbe.2012.9.297. |
[11] |
G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012), 25-38.
doi: 10.1137/110826588. |
[12] |
J. M. Hyman, J. Li and E. A. Stanley, The differential infectivity and staged progression models for the transmission of HIV, Math. Biosci., 155 (1999), 77-109.
doi: 10.1016/S0025-5564(98)10057-3. |
[13] |
R. Koenig, International groups battle cholera in Zimbabwe, Science, 323 (2009), 860-861.
doi: 10.1126/science.323.5916.860. |
[14] |
J. Ma and D. J. D. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol., 68 (2006), 679-702.
doi: 10.1007/s11538-005-9047-7. |
[15] |
P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140.
doi: 10.1080/00036810903208122. |
[16] |
C. C. McCluskey, Delay versus age-of-infection-global stability, Appl. Math. Comput., 217 (2010), 3046-3049. |
[17] |
Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. Smith and J. Morris, Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci. USA, 108 (2011), 8767-8772. |
[18] |
Z. Shuai and P. van den Driessche, Global dynamics of cholera models with differential infectivity, Math. Biosci., 234 (2010), 118-126.
doi: 10.1016/j.mbs.2011.09.003. |
[19] |
H. L. Smith and H. R. Thieme, "Dynamical Systems and Population Persistence," Graduate Studies in Mathematics, Vol. 118, American Mathematical Society, Providence, 2011. |
[20] |
H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math., 53 (1993), 1447-1479.
doi: 10.1137/0153068. |
[21] |
J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72 (2010), 1506-1533.
doi: 10.1007/s11538-010-9507-6. |
[22] |
A. R. Tuite, J. H. Tien, M. Eisenberg, D. J. D. Earn, J. Ma and D. N. Fisman, Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Internal Med., 154 (2011), 593-601.
doi: 10.7326/0003-4819-154-9-201105030-00334. |
[23] |
G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics," Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, New York, 1985. |
[24] |
World Health Organization, Cholera annual report 2006, Weekly Epidemiological Record, 82 (2007), 273-284. |
[25] |
World Health Organization, Cholera: Global surveillance summary 2008, Weekly Epidemiological Record, 84 (2008), 309-324. |
[26] |
World Health Organization, Cholera fact sheets, August 2011. Available from: http://www.who.int. |
show all references
References:
[1] |
A. Alexanderian, M. K. Gobbert, K. R. Fister, H. Gaff, S. Lenhart and E. Schaefer, An age-structured model for the spread of epidemic cholera: Analysis and simulation, Nonlinear Anal. Real World Appl., 12 (2011), 3483-3498.
doi: 10.1016/j.nonrwa.2011.06.009. |
[2] |
F. Brauer, Age-of-infection and the final size relation, Math. Biosci. Eng., 5 (2008), 681-690.
doi: 10.3934/mbe.2008.5.681. |
[3] |
F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology," Second edition, Springer, New York, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[4] |
F. Brauer, C. Castillo-Chavez and Z. Feng, Discrete epidemic models, Math. Biosc. Eng., 7 (2010), 1-15.
doi: 10.3934/mbe.2010.7.1. |
[5] |
F. Brauer, P. van den Driessche and J. Wu, eds., "Mathematical Epidemiology," Lecture Notes in Math., Vol. 1945, Springer, Berlin, 2008.
doi: 10.1007/978-3-540-78911-6. |
[6] |
D. L. Chao, M. E. Halloran and I. M. Longini, Jr., Vaccination strategies for epidemic cholera in Haiti with implications for the developing world, Proc. Natl. Acad. Sci. USA, 108 (2011), 7081-7085.
doi: 10.1073/pnas.1102149108. |
[7] |
J. M. Cushing, "An Introduction to Structured Population Dynamics," CBMS-NSF Regional Conference Series in Applied Mathematics, 71, SIAM, Philadelphia, 1998.
doi: 10.1137/1.9781611970005. |
[8] |
M. Enserink, Haiti's outbreak is latest in cholera's new global assault, Science, 330 (2010), 738-739.
doi: 10.1126/science.330.6005.738. |
[9] |
D. M. Hartley, J. G. Morris, Jr. and D. L. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics? PLOS Med., 3 (2006), 63-69.
doi: 10.1371/journal.pmed.0030007. |
[10] |
G. Huang, E. Beretta and Y. Takeuchi, Global stability for epidemic model with constant latency and infectious periods, Math. Biosci. Eng., 9 (2012), 297-312.
doi: 10.3934/mbe.2012.9.297. |
[11] |
G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012), 25-38.
doi: 10.1137/110826588. |
[12] |
J. M. Hyman, J. Li and E. A. Stanley, The differential infectivity and staged progression models for the transmission of HIV, Math. Biosci., 155 (1999), 77-109.
doi: 10.1016/S0025-5564(98)10057-3. |
[13] |
R. Koenig, International groups battle cholera in Zimbabwe, Science, 323 (2009), 860-861.
doi: 10.1126/science.323.5916.860. |
[14] |
J. Ma and D. J. D. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol., 68 (2006), 679-702.
doi: 10.1007/s11538-005-9047-7. |
[15] |
P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140.
doi: 10.1080/00036810903208122. |
[16] |
C. C. McCluskey, Delay versus age-of-infection-global stability, Appl. Math. Comput., 217 (2010), 3046-3049. |
[17] |
Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. Smith and J. Morris, Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci. USA, 108 (2011), 8767-8772. |
[18] |
Z. Shuai and P. van den Driessche, Global dynamics of cholera models with differential infectivity, Math. Biosci., 234 (2010), 118-126.
doi: 10.1016/j.mbs.2011.09.003. |
[19] |
H. L. Smith and H. R. Thieme, "Dynamical Systems and Population Persistence," Graduate Studies in Mathematics, Vol. 118, American Mathematical Society, Providence, 2011. |
[20] |
H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math., 53 (1993), 1447-1479.
doi: 10.1137/0153068. |
[21] |
J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72 (2010), 1506-1533.
doi: 10.1007/s11538-010-9507-6. |
[22] |
A. R. Tuite, J. H. Tien, M. Eisenberg, D. J. D. Earn, J. Ma and D. N. Fisman, Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Internal Med., 154 (2011), 593-601.
doi: 10.7326/0003-4819-154-9-201105030-00334. |
[23] |
G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics," Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, New York, 1985. |
[24] |
World Health Organization, Cholera annual report 2006, Weekly Epidemiological Record, 82 (2007), 273-284. |
[25] |
World Health Organization, Cholera: Global surveillance summary 2008, Weekly Epidemiological Record, 84 (2008), 309-324. |
[26] |
World Health Organization, Cholera fact sheets, August 2011. Available from: http://www.who.int. |
[1] |
Fred Brauer. Age-of-infection and the final size relation. Mathematical Biosciences & Engineering, 2008, 5 (4) : 681-690. doi: 10.3934/mbe.2008.5.681 |
[2] |
Jinliang Wang, Ran Zhang, Toshikazu Kuniya. A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2016, 13 (1) : 227-247. doi: 10.3934/mbe.2016.13.227 |
[3] |
Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641 |
[4] |
Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449 |
[5] |
Eleonora Messina, Mario Pezzella, Antonia Vecchio. A non-standard numerical scheme for an age-of-infection epidemic model. Journal of Computational Dynamics, 2022, 9 (2) : 239-252. doi: 10.3934/jcd.2021029 |
[6] |
Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859 |
[7] |
Christine K. Yang, Fred Brauer. Calculation of $R_0$ for age-of-infection models. Mathematical Biosciences & Engineering, 2008, 5 (3) : 585-599. doi: 10.3934/mbe.2008.5.585 |
[8] |
Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060 |
[9] |
Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569-594. doi: 10.3934/mbe.2018026 |
[10] |
Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369 |
[11] |
Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033 |
[12] |
Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643 |
[13] |
C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008 |
[14] |
Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186 |
[15] |
Shu Liao, Jin Wang. Stability analysis and application of a mathematical cholera model. Mathematical Biosciences & Engineering, 2011, 8 (3) : 733-752. doi: 10.3934/mbe.2011.8.733 |
[16] |
Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971 |
[17] |
Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215 |
[18] |
Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214 |
[19] |
Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525 |
[20] |
Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu. A final size relation for epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (2) : 159-175. doi: 10.3934/mbe.2007.4.159 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]