2013, 10(5&6): 1635-1650. doi: 10.3934/mbe.2013.10.1635

Chemostats and epidemics: Competition for nutrients/hosts

1. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804

2. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287

Received  February 2013 Revised  April 2013 Published  August 2013

In a chemostat, several species compete for the same nutrient, while in an epidemic, several strains of the same pathogen may compete for the same susceptible hosts. As winner, chemostat models predict the species with the lowest break-even concentration, while epidemic models predict the strain with the largest basic reproduction number. We show that these predictions amount to the same if the per capita functional responses of consumer species to the nutrient concentration or of infective individuals to the density of susceptibles are proportional to each other but that they are different if the functional responses are nonproportional. In the second case, the correct prediction is given by the break-even concentrations. In the case of nonproportional functional responses, we add a class for which the prediction does not only rely on local stability and instability of one-species (strain) equilibria but on the global outcome of the competition. We also review some results for nonautonomous models.
Citation: Hal L. Smith, Horst R. Thieme. Chemostats and epidemics: Competition for nutrients/hosts. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1635-1650. doi: 10.3934/mbe.2013.10.1635
References:
[1]

A. S. Ackleh and L. J. S. Allen, Competitive exclusion and coexistence for pathogens in an epidemic model with variable population size,, J. Math. Biol., 47 (2003), 153.  doi: 10.1007/s00285-003-0207-9.  Google Scholar

[2]

A. S. Ackleh and L. J. S. Allen, Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality,, Discrete and Continuous Dynamical Systems Series B, 5 (2005), 175.  doi: 10.3934/dcdsb.2005.5.175.  Google Scholar

[3]

P. Adda, J. L. Dimi, A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, General models of host-parasite systems. Global analysis,, Disc. Cont. Dyn. Syst. Ser. B, 8 (2007), 1.  doi: 10.3934/dcdsb.2007.8.1.  Google Scholar

[4]

R. M. Anderson and R. M. May, Coevolution of host and parasites,, Parasitology, 85 (1982), 411.  doi: 10.1111/j.1095-8312.2009.01256.x.  Google Scholar

[5]

J. Arino, S. S. Pilyugin and G. S. K. Wolkowicz, Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models,, Can. Appl. Math. Q., 11 (2003), 107.   Google Scholar

[6]

R. A. Armstrong and R. McGehee, Competitive exclusion,, Amer. Natur., 115 (1980), 151.  doi: 10.1086/283553.  Google Scholar

[7]

F. B. Bader, Kinetics of double-substrate limited growth,, in, (1982), 1.   Google Scholar

[8]

M. M. Ballyk, C. C. McCluskey and G. S. K. Wolkowicz, Global analysis of competition for perfectly substituable resources with linear response,, J. Math. Biol., 51 (2005), 458.  doi: 10.1007/s00285-005-0333-7.  Google Scholar

[9]

M. M. Ballyk and G. S. K. Wolkowicz, Exploitative competition in the chemostat for two perfectly substitutable resources,, Math. Biosci., 118 (1993), 127.  doi: 10.1016/0025-5564(93)90050-K.  Google Scholar

[10]

E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay,, Nonlinear Analysis, 47 (2001), 4107.  doi: 10.1016/S0362-546X(01)00528-4.  Google Scholar

[11]

F. F. Blackman, Optima and limiting factors,, Ann. Bot. London, 19 (1905), 281.   Google Scholar

[12]

C. J. Briggs and H. C. J. Godfray, The dynamics of insect-pathogen interactions in stage-structured populations,, Amer. Nat., 145 (1995), 855.  doi: 10.1086/285774.  Google Scholar

[13]

H.-J. Bremermann and H. R. Thieme, A competition exclusion principle for pathogen virulence,, J. Math. Biol., 27 (1989), 179.  doi: 10.1007/BF00276102.  Google Scholar

[14]

G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake,, SIAM J. Appl. Math., 45 (1985), 138.  doi: 10.1137/0145006.  Google Scholar

[15]

V. Capasso, "Mathematical Structures of Epidemic Systems,", Lecture Notes in Biomathematics, 97 (1993).  doi: 10.1007/978-3-540-70514-7.  Google Scholar

[16]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic model,, Math. Biosci., 42 (1978), 43.  doi: 10.1016/0025-5564(78)90006-8.  Google Scholar

[17]

C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models,, in, (1995), 33.   Google Scholar

[18]

J. M. Cushing, Two species competition in a periodic environment,, J. Math. Biol., 10 (1980), 385.  doi: 10.1007/BF00276097.  Google Scholar

[19]

P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach,, J. Math. Biol., 11 (1981), 319.  doi: 10.1007/BF00276900.  Google Scholar

[20]

O. Diekmann, The many facets of evolutionary dynamics,, J. Biol. Systems, 5 (1997), 325.  doi: 10.1142/S0218339097000205.  Google Scholar

[21]

O. Diekmann, A beginners guide to adaptive dynamics,, in, 63 (2004), 47.   Google Scholar

[22]

O. Diekmann, J. A. P. Heesterbeek and T. Britton, "Mathematical Tools for Understanding Infectious Disease Dynamics,", Princeton Series in Theoretical and Computational Biology, (2013).   Google Scholar

[23]

P. W. Ewald and G. De Leo, Alternative transmission modes and the evolution of virulence,, in, (2002), 10.  doi: 10.1017/CBO9780511525728.004.  Google Scholar

[24]

A. Fall, A. Iggidr, G. Sallet and J. J. Tewa, Epidemiological models and Lyapunov functions,, Math. Model. Nat. Phenom., 2 (2007), 55.  doi: 10.1051/mmnp:2008011.  Google Scholar

[25]

H. I. Freedman and Y. Xu, Models of competition in the chemostat with instantaneous and delayed nutrient recycling,, J. Math. Biol., 31 (1993), 513.  doi: 10.1007/BF00173890.  Google Scholar

[26]

P. Georgescu and Y.-H. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal,, SIAM J. Appl. Math., 67 (): 337.  doi: 10.1137/060654876.  Google Scholar

[27]

B. S. Goh, Global stability in many species systems,, Amer. Nat., 111 (1977), 135.  doi: 10.1086/283144.  Google Scholar

[28]

H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases,, Math. Biosci. Engin., 3 (2006), 513.  doi: 10.3934/mbe.2006.3.513.  Google Scholar

[29]

H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136 (2008), 2793.  doi: 10.1090/S0002-9939-08-09341-6.  Google Scholar

[30]

H. Guo, M. Y. Li and Z. Shuai, Global stability in multigroup epidemic models,, in, 11 (2009), 268.   Google Scholar

[31]

W. M. Hirsch, H. Hanisch and J.-P. Gabriel, Differential equation models for some parasitic infections: Methods for the study of asymptotic behavior,, Comm. Pure Appl. Math., 38 (1985), 733.  doi: 10.1002/cpa.3160380607.  Google Scholar

[32]

S.-B. Hsu, Limiting behavior for competing species,, SIAM J. Appl. Math., 34 (1978), 760.  doi: 10.1137/0134064.  Google Scholar

[33]

S.-B. Hsu, S. P. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in a continuous culture of micro-organisms,, SIAM J. App. Math., 32 (1977), 366.  doi: 10.1137/0132030.  Google Scholar

[34]

S.-B. Hsu, A competition model for a seasonally fluctuating nutrient,, J. Math. Biol., 9 (1980), 115.  doi: 10.1007/BF00275917.  Google Scholar

[35]

S.-B. Hsu, A survey of constructing Lyapunov functions for mathematical models in population biology,, Taiwanese J. Math., 9 (2005), 151.   Google Scholar

[36]

A. Iggidr, J.-C. Kamgang, G. Sallet and J.-J. Tewa, Global analysis of new malaria intrahost models with a competitive exclusion principle,, SIAM J. Appl. Math., 67 (2006), 260.  doi: 10.1137/050643271.  Google Scholar

[37]

A. Iggidr, J. Mbang and G. Sallet, Stability analysis of within-host parasite models with delays,, Math. Biosci., 209 (2007), 51.  doi: 10.1016/j.mbs.2007.01.008.  Google Scholar

[38]

V. S. Ivlev, "Experimental Ecology of the Feeding of Fishes,", Yale University Press, (1955).   Google Scholar

[39]

A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models,, Math. Med. Biol., 21 (2004), 75.  doi: 10.1007/s11538-008-9352-z.  Google Scholar

[40]

A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615.  doi: 10.1007/s11538-005-9037-9.  Google Scholar

[41]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871.  doi: 10.1007/s11538-007-9196-y.  Google Scholar

[42]

A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and non-linear incidence rate,, Math. Med. Biol., 26 (2009), 225.  doi: 10.1093/imammb/dqp009.  Google Scholar

[43]

A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models,, MMB IMA, 22 (2005), 113.   Google Scholar

[44]

A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models,, Appl. Math. Letters, 15 (2002), 955.  doi: 10.1016/S0893-9659(02)00069-1.  Google Scholar

[45]

B. Li, Global asymptotic behavior of the chemostat: General response functions and different removal rates,, SIAM J. Appl. Math., 59 (1999), 411.  doi: 10.1137/S003613999631100X.  Google Scholar

[46]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434.  doi: 10.1137/090779322.  Google Scholar

[47]

M. Y. Li and Z. Shuai, Global stability problem for coupled systems of differential equations on networks,, J. Differential Eqns., 248 (2010), 1.  doi: 10.1016/j.jde.2009.09.003.  Google Scholar

[48]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361 (2010), 38.  doi: 10.1016/j.jmaa.2009.09.017.  Google Scholar

[49]

X. Lin and J. W.-H. So, Global stability of the endemic equilibrium and uniform persistence in epidemic models with subpopulations,, J. Austral. Math. Soc. Ser. B, 34 (1993), 282.  doi: 10.1017/S0334270000008900.  Google Scholar

[50]

S. Liu and L. Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy,, Math. Biosci. Eng., 7 (2010), 675.  doi: 10.3934/mbe.2010.7.675.  Google Scholar

[51]

P. Magal, C. C. McCluskey and G. F. Webb, Liapunov functional and global asymptotic stability for an infection-age model,, Applicable Analysis, 89 (2010), 1109.  doi: 10.1080/00036810903208122.  Google Scholar

[52]

M. Martcheva, A non-autonomous multi-strain SIS epidemic model,, J. Biol. Dyn., 3 (2009), 235.  doi: 10.1080/17513750802638712.  Google Scholar

[53]

M. Martcheva, S. S. Pilyugin and R. D. Holt, Subthreshold and superthreshold coexistence of pathogen variants: The impact of host structure,, Math. Biosci., 207 (2007), 58.  doi: 10.1016/j.mbs.2006.09.010.  Google Scholar

[54]

C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression,, Math. Biosci. Eng., 3 (2006), 603.  doi: 10.3934/mbe.2006.3.603.  Google Scholar

[55]

C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis,, J. Math. Anal. Appl., 338 (2008), 518.  doi: 10.1016/j.jmaa.2007.05.012.  Google Scholar

[56]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. Engin., 6 (2009), 603.  doi: 10.3934/mbe.2009.6.603.  Google Scholar

[57]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete,, Nonlinear Anal. RWA, 11 (2010), 55.  doi: 10.1016/j.nonrwa.2008.10.014.  Google Scholar

[58]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence,, Nonlinear Anal. RWA, 11 (2010), 3106.  doi: 10.1016/j.nonrwa.2009.11.005.  Google Scholar

[59]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and general nonlinear incidence,, Math. Biosci. Engin., 7 (2010), 837.  doi: 10.3934/mbe.2010.7.837.  Google Scholar

[60]

J. Mena-Lorca, J. X. Velasco-Hernandez and C. Castillo-Chavez, Density-dependent dynamics and superinfection in an epidemic model,, IMA J. Math. Appl. Med. Biol., 16 (1999), 307.   Google Scholar

[61]

J. A. J. Metz, S. D. Mylius and O. Diekmann, When does evolution optimise?, Evolutionary Ecology Research, 10 (2008), 629.   Google Scholar

[62]

J. Prüss, L. Pujo-Menjouet and G. F. Webb, Analysis of a model for the dynamics of prions,, Discr. Contin. Dyn. Syst. B, 6 (2006), 225.   Google Scholar

[63]

J. Roughgarden, "Theory of Population Genetics and Evolutionary Ecology: An Introduction,", Macmillan, (1979).   Google Scholar

[64]

S. Ruan and X.-Z. He, Global stability in chemostat-type competition models with nutrient recycling,, SIAM J. Appl. Math., 58 (1998), 170.  doi: 10.1137/S0036139996299248.  Google Scholar

[65]

T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields,, Math. Biosci. Eng., 8 (2011), 827.  doi: 10.3934/mbe.2011.8.827.  Google Scholar

[66]

H. L. Smith, Competitive coexistence in an oscillating chemostat,, SIAM J. Appl. Math., 40 (1981), 498.  doi: 10.1137/0140042.  Google Scholar

[67]

H. L. Smith and P. Waltman, "The Theory of the Chemostat: Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[68]

S. Tennenbaum, T. G. Kassem, S. Roudenko and C. Castillo-Chavez, The role of transactional sex in spreading HIV in Nigeria,, in, 410 (2006), 367.  doi: 10.1090/conm/410/07737.  Google Scholar

[69]

H. R. Thieme, "Mathematics in Population Biology,", Princeton Series in Theoretical and Computational Biology, (2003).   Google Scholar

[70]

H. R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators,, J. Differential Eqns., 250 (2011), 3772.  doi: 10.1016/j.jde.2011.01.007.  Google Scholar

[71]

H. R. Thieme, Pathogen competition and coexistence and the evolution of virulence,, in, (2007), 123.   Google Scholar

[72]

V. Volterra, "Leçons sur la Théorie Mathématique de la Lutte pour la Vie,", Gauthier-Villars, (1931).   Google Scholar

[73]

E. B. Wilson and J. Worcester, The law of mass action in epidemiology, Part I,, Proc. Nat. Acad. Sci., 31 (1945), 24.  doi: 10.1073/pnas.31.9.294.  Google Scholar

[74]

G. S. K. Wolkowicz, Successful invasion of a food web in a chemostat,, Math. Biosci., 93 (1989), 249.  doi: 10.1016/0025-5564(89)90025-4.  Google Scholar

[75]

G. S. K. Wolkowicz, M. M. Ballyk and S. P. Daoussis, Interaction in a chemostat: Introduction of a competitor can promote greater diversity,, Rocky Mountain Journal of Mathematics, 25 (1995), 515.  doi: 10.1216/rmjm/1181072300.  Google Scholar

[76]

G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates,, SIAM J. Appl. Math., 52 (1992), 222.  doi: 10.1137/0152012.  Google Scholar

[77]

G. S. K. Wolkowicz and H. Xia, Global asymptotic behavior of a chemostat model with discrete delay,, SIAM J. Appl. Math., 57 (1997), 1019.  doi: 10.1137/S0036139995287314.  Google Scholar

[78]

G. S. K. Wolkowicz and X.-Q. Zhao, $N$-species competition in a periodic chemostat,, Differential Integral Equations, 11 (1998), 465.   Google Scholar

show all references

References:
[1]

A. S. Ackleh and L. J. S. Allen, Competitive exclusion and coexistence for pathogens in an epidemic model with variable population size,, J. Math. Biol., 47 (2003), 153.  doi: 10.1007/s00285-003-0207-9.  Google Scholar

[2]

A. S. Ackleh and L. J. S. Allen, Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality,, Discrete and Continuous Dynamical Systems Series B, 5 (2005), 175.  doi: 10.3934/dcdsb.2005.5.175.  Google Scholar

[3]

P. Adda, J. L. Dimi, A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, General models of host-parasite systems. Global analysis,, Disc. Cont. Dyn. Syst. Ser. B, 8 (2007), 1.  doi: 10.3934/dcdsb.2007.8.1.  Google Scholar

[4]

R. M. Anderson and R. M. May, Coevolution of host and parasites,, Parasitology, 85 (1982), 411.  doi: 10.1111/j.1095-8312.2009.01256.x.  Google Scholar

[5]

J. Arino, S. S. Pilyugin and G. S. K. Wolkowicz, Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models,, Can. Appl. Math. Q., 11 (2003), 107.   Google Scholar

[6]

R. A. Armstrong and R. McGehee, Competitive exclusion,, Amer. Natur., 115 (1980), 151.  doi: 10.1086/283553.  Google Scholar

[7]

F. B. Bader, Kinetics of double-substrate limited growth,, in, (1982), 1.   Google Scholar

[8]

M. M. Ballyk, C. C. McCluskey and G. S. K. Wolkowicz, Global analysis of competition for perfectly substituable resources with linear response,, J. Math. Biol., 51 (2005), 458.  doi: 10.1007/s00285-005-0333-7.  Google Scholar

[9]

M. M. Ballyk and G. S. K. Wolkowicz, Exploitative competition in the chemostat for two perfectly substitutable resources,, Math. Biosci., 118 (1993), 127.  doi: 10.1016/0025-5564(93)90050-K.  Google Scholar

[10]

E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay,, Nonlinear Analysis, 47 (2001), 4107.  doi: 10.1016/S0362-546X(01)00528-4.  Google Scholar

[11]

F. F. Blackman, Optima and limiting factors,, Ann. Bot. London, 19 (1905), 281.   Google Scholar

[12]

C. J. Briggs and H. C. J. Godfray, The dynamics of insect-pathogen interactions in stage-structured populations,, Amer. Nat., 145 (1995), 855.  doi: 10.1086/285774.  Google Scholar

[13]

H.-J. Bremermann and H. R. Thieme, A competition exclusion principle for pathogen virulence,, J. Math. Biol., 27 (1989), 179.  doi: 10.1007/BF00276102.  Google Scholar

[14]

G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake,, SIAM J. Appl. Math., 45 (1985), 138.  doi: 10.1137/0145006.  Google Scholar

[15]

V. Capasso, "Mathematical Structures of Epidemic Systems,", Lecture Notes in Biomathematics, 97 (1993).  doi: 10.1007/978-3-540-70514-7.  Google Scholar

[16]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic model,, Math. Biosci., 42 (1978), 43.  doi: 10.1016/0025-5564(78)90006-8.  Google Scholar

[17]

C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models,, in, (1995), 33.   Google Scholar

[18]

J. M. Cushing, Two species competition in a periodic environment,, J. Math. Biol., 10 (1980), 385.  doi: 10.1007/BF00276097.  Google Scholar

[19]

P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach,, J. Math. Biol., 11 (1981), 319.  doi: 10.1007/BF00276900.  Google Scholar

[20]

O. Diekmann, The many facets of evolutionary dynamics,, J. Biol. Systems, 5 (1997), 325.  doi: 10.1142/S0218339097000205.  Google Scholar

[21]

O. Diekmann, A beginners guide to adaptive dynamics,, in, 63 (2004), 47.   Google Scholar

[22]

O. Diekmann, J. A. P. Heesterbeek and T. Britton, "Mathematical Tools for Understanding Infectious Disease Dynamics,", Princeton Series in Theoretical and Computational Biology, (2013).   Google Scholar

[23]

P. W. Ewald and G. De Leo, Alternative transmission modes and the evolution of virulence,, in, (2002), 10.  doi: 10.1017/CBO9780511525728.004.  Google Scholar

[24]

A. Fall, A. Iggidr, G. Sallet and J. J. Tewa, Epidemiological models and Lyapunov functions,, Math. Model. Nat. Phenom., 2 (2007), 55.  doi: 10.1051/mmnp:2008011.  Google Scholar

[25]

H. I. Freedman and Y. Xu, Models of competition in the chemostat with instantaneous and delayed nutrient recycling,, J. Math. Biol., 31 (1993), 513.  doi: 10.1007/BF00173890.  Google Scholar

[26]

P. Georgescu and Y.-H. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal,, SIAM J. Appl. Math., 67 (): 337.  doi: 10.1137/060654876.  Google Scholar

[27]

B. S. Goh, Global stability in many species systems,, Amer. Nat., 111 (1977), 135.  doi: 10.1086/283144.  Google Scholar

[28]

H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases,, Math. Biosci. Engin., 3 (2006), 513.  doi: 10.3934/mbe.2006.3.513.  Google Scholar

[29]

H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136 (2008), 2793.  doi: 10.1090/S0002-9939-08-09341-6.  Google Scholar

[30]

H. Guo, M. Y. Li and Z. Shuai, Global stability in multigroup epidemic models,, in, 11 (2009), 268.   Google Scholar

[31]

W. M. Hirsch, H. Hanisch and J.-P. Gabriel, Differential equation models for some parasitic infections: Methods for the study of asymptotic behavior,, Comm. Pure Appl. Math., 38 (1985), 733.  doi: 10.1002/cpa.3160380607.  Google Scholar

[32]

S.-B. Hsu, Limiting behavior for competing species,, SIAM J. Appl. Math., 34 (1978), 760.  doi: 10.1137/0134064.  Google Scholar

[33]

S.-B. Hsu, S. P. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in a continuous culture of micro-organisms,, SIAM J. App. Math., 32 (1977), 366.  doi: 10.1137/0132030.  Google Scholar

[34]

S.-B. Hsu, A competition model for a seasonally fluctuating nutrient,, J. Math. Biol., 9 (1980), 115.  doi: 10.1007/BF00275917.  Google Scholar

[35]

S.-B. Hsu, A survey of constructing Lyapunov functions for mathematical models in population biology,, Taiwanese J. Math., 9 (2005), 151.   Google Scholar

[36]

A. Iggidr, J.-C. Kamgang, G. Sallet and J.-J. Tewa, Global analysis of new malaria intrahost models with a competitive exclusion principle,, SIAM J. Appl. Math., 67 (2006), 260.  doi: 10.1137/050643271.  Google Scholar

[37]

A. Iggidr, J. Mbang and G. Sallet, Stability analysis of within-host parasite models with delays,, Math. Biosci., 209 (2007), 51.  doi: 10.1016/j.mbs.2007.01.008.  Google Scholar

[38]

V. S. Ivlev, "Experimental Ecology of the Feeding of Fishes,", Yale University Press, (1955).   Google Scholar

[39]

A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models,, Math. Med. Biol., 21 (2004), 75.  doi: 10.1007/s11538-008-9352-z.  Google Scholar

[40]

A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615.  doi: 10.1007/s11538-005-9037-9.  Google Scholar

[41]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871.  doi: 10.1007/s11538-007-9196-y.  Google Scholar

[42]

A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and non-linear incidence rate,, Math. Med. Biol., 26 (2009), 225.  doi: 10.1093/imammb/dqp009.  Google Scholar

[43]

A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models,, MMB IMA, 22 (2005), 113.   Google Scholar

[44]

A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models,, Appl. Math. Letters, 15 (2002), 955.  doi: 10.1016/S0893-9659(02)00069-1.  Google Scholar

[45]

B. Li, Global asymptotic behavior of the chemostat: General response functions and different removal rates,, SIAM J. Appl. Math., 59 (1999), 411.  doi: 10.1137/S003613999631100X.  Google Scholar

[46]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434.  doi: 10.1137/090779322.  Google Scholar

[47]

M. Y. Li and Z. Shuai, Global stability problem for coupled systems of differential equations on networks,, J. Differential Eqns., 248 (2010), 1.  doi: 10.1016/j.jde.2009.09.003.  Google Scholar

[48]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361 (2010), 38.  doi: 10.1016/j.jmaa.2009.09.017.  Google Scholar

[49]

X. Lin and J. W.-H. So, Global stability of the endemic equilibrium and uniform persistence in epidemic models with subpopulations,, J. Austral. Math. Soc. Ser. B, 34 (1993), 282.  doi: 10.1017/S0334270000008900.  Google Scholar

[50]

S. Liu and L. Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy,, Math. Biosci. Eng., 7 (2010), 675.  doi: 10.3934/mbe.2010.7.675.  Google Scholar

[51]

P. Magal, C. C. McCluskey and G. F. Webb, Liapunov functional and global asymptotic stability for an infection-age model,, Applicable Analysis, 89 (2010), 1109.  doi: 10.1080/00036810903208122.  Google Scholar

[52]

M. Martcheva, A non-autonomous multi-strain SIS epidemic model,, J. Biol. Dyn., 3 (2009), 235.  doi: 10.1080/17513750802638712.  Google Scholar

[53]

M. Martcheva, S. S. Pilyugin and R. D. Holt, Subthreshold and superthreshold coexistence of pathogen variants: The impact of host structure,, Math. Biosci., 207 (2007), 58.  doi: 10.1016/j.mbs.2006.09.010.  Google Scholar

[54]

C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression,, Math. Biosci. Eng., 3 (2006), 603.  doi: 10.3934/mbe.2006.3.603.  Google Scholar

[55]

C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis,, J. Math. Anal. Appl., 338 (2008), 518.  doi: 10.1016/j.jmaa.2007.05.012.  Google Scholar

[56]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. Engin., 6 (2009), 603.  doi: 10.3934/mbe.2009.6.603.  Google Scholar

[57]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete,, Nonlinear Anal. RWA, 11 (2010), 55.  doi: 10.1016/j.nonrwa.2008.10.014.  Google Scholar

[58]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence,, Nonlinear Anal. RWA, 11 (2010), 3106.  doi: 10.1016/j.nonrwa.2009.11.005.  Google Scholar

[59]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and general nonlinear incidence,, Math. Biosci. Engin., 7 (2010), 837.  doi: 10.3934/mbe.2010.7.837.  Google Scholar

[60]

J. Mena-Lorca, J. X. Velasco-Hernandez and C. Castillo-Chavez, Density-dependent dynamics and superinfection in an epidemic model,, IMA J. Math. Appl. Med. Biol., 16 (1999), 307.   Google Scholar

[61]

J. A. J. Metz, S. D. Mylius and O. Diekmann, When does evolution optimise?, Evolutionary Ecology Research, 10 (2008), 629.   Google Scholar

[62]

J. Prüss, L. Pujo-Menjouet and G. F. Webb, Analysis of a model for the dynamics of prions,, Discr. Contin. Dyn. Syst. B, 6 (2006), 225.   Google Scholar

[63]

J. Roughgarden, "Theory of Population Genetics and Evolutionary Ecology: An Introduction,", Macmillan, (1979).   Google Scholar

[64]

S. Ruan and X.-Z. He, Global stability in chemostat-type competition models with nutrient recycling,, SIAM J. Appl. Math., 58 (1998), 170.  doi: 10.1137/S0036139996299248.  Google Scholar

[65]

T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields,, Math. Biosci. Eng., 8 (2011), 827.  doi: 10.3934/mbe.2011.8.827.  Google Scholar

[66]

H. L. Smith, Competitive coexistence in an oscillating chemostat,, SIAM J. Appl. Math., 40 (1981), 498.  doi: 10.1137/0140042.  Google Scholar

[67]

H. L. Smith and P. Waltman, "The Theory of the Chemostat: Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[68]

S. Tennenbaum, T. G. Kassem, S. Roudenko and C. Castillo-Chavez, The role of transactional sex in spreading HIV in Nigeria,, in, 410 (2006), 367.  doi: 10.1090/conm/410/07737.  Google Scholar

[69]

H. R. Thieme, "Mathematics in Population Biology,", Princeton Series in Theoretical and Computational Biology, (2003).   Google Scholar

[70]

H. R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators,, J. Differential Eqns., 250 (2011), 3772.  doi: 10.1016/j.jde.2011.01.007.  Google Scholar

[71]

H. R. Thieme, Pathogen competition and coexistence and the evolution of virulence,, in, (2007), 123.   Google Scholar

[72]

V. Volterra, "Leçons sur la Théorie Mathématique de la Lutte pour la Vie,", Gauthier-Villars, (1931).   Google Scholar

[73]

E. B. Wilson and J. Worcester, The law of mass action in epidemiology, Part I,, Proc. Nat. Acad. Sci., 31 (1945), 24.  doi: 10.1073/pnas.31.9.294.  Google Scholar

[74]

G. S. K. Wolkowicz, Successful invasion of a food web in a chemostat,, Math. Biosci., 93 (1989), 249.  doi: 10.1016/0025-5564(89)90025-4.  Google Scholar

[75]

G. S. K. Wolkowicz, M. M. Ballyk and S. P. Daoussis, Interaction in a chemostat: Introduction of a competitor can promote greater diversity,, Rocky Mountain Journal of Mathematics, 25 (1995), 515.  doi: 10.1216/rmjm/1181072300.  Google Scholar

[76]

G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates,, SIAM J. Appl. Math., 52 (1992), 222.  doi: 10.1137/0152012.  Google Scholar

[77]

G. S. K. Wolkowicz and H. Xia, Global asymptotic behavior of a chemostat model with discrete delay,, SIAM J. Appl. Math., 57 (1997), 1019.  doi: 10.1137/S0036139995287314.  Google Scholar

[78]

G. S. K. Wolkowicz and X.-Q. Zhao, $N$-species competition in a periodic chemostat,, Differential Integral Equations, 11 (1998), 465.   Google Scholar

[1]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[2]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[3]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[5]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[14]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[15]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[18]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]