2013, 3(3): 287-302. doi: 10.3934/mcrf.2013.3.287

The Serret-Andoyer Riemannian metric and Euler-Poinsot rigid body motion

1. 

Institut de mathématiques de Bourgogne, 9 avenue Savary, 21078 Dijon, France

2. 

INRIA Sophia Antipolis Méditerranée, B.P. 93, route des Lucioles, 06902 Sophia Antipolis, France, France

Received  December 2012 Revised  March 2013 Published  September 2013

The Euler-Poinsot rigid body motion is a standard mechanical system and is the model for left-invariant Riemannian metrics on $SO(3)$. In this article, using the Serret-Andoyer variables we parameterize the solutions and compute the Jacobi fields in relation with the conjugate locus evaluation. Moreover the metric can be restricted to a 2D surface and the conjugate points of this metric are evaluated using recent work [4] on surfaces of revolution.
Citation: Bernard Bonnard, Olivier Cots, Nataliya Shcherbakova. The Serret-Andoyer Riemannian metric and Euler-Poinsot rigid body motion. Mathematical Control & Related Fields, 2013, 3 (3) : 287-302. doi: 10.3934/mcrf.2013.3.287
References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", Translated from the Russian by K. Vogtmann and A. Weinstein, (1989).

[2]

L. Bates and F. Fassò, The conjugate locus for the euler top. I. The axisymmetric case,, Int. Math. Forum, 2 (2007), 2109.

[3]

B. Bonnard, Contrôlabilité de systemes mécaniques sur les groupes de lie (French), [controllability of mechanical systems on lie groups],, SIAM J. Control Optim., 22 (1984), 711. doi: 10.1137/0322045.

[4]

B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1081. doi: 10.1016/j.anihpc.2008.03.010.

[5]

B. Bonnard, O. Cots and N. Shcherbakova, Energy minimization problem in two-level dissipative quantum control: Meridian case,, J. Math. Sci., (2013).

[6]

M. do Carmo, "Riemannian Geometry,'' Translated from the second Portuguese edition by Francis Flaherty,, Mathematics: Theory & Applications. Birkhäuser Boston, (1992).

[7]

P. Gurfil, A. Elipe, W. Tangren and M. Efroimsky, The Serret-Andoyer formalism in rigid-body dynamics. I. Symmetries and perturbations,, Regul. Chaotic Dyn., 12 (2007), 389. doi: 10.1134/S156035470704003X.

[8]

J. Itoh and K. Kiyohara, The cut loci and the conjugate loci on ellipsoids,, Manuscripta Math., 114 (2004), 247. doi: 10.1007/s00229-004-0455-z.

[9]

V. Jurdjevic, "Geometric Control Theory,'', Cambridge studies in advanced mathematics, (1997).

[10]

M. Lara and S. Ferrer, Closed form integration of the Hitzl-Breakwell problem in action-angle variables,, IAA-AAS-DyCoSS1-01-02 (AAS 12-302), (): 1.

[11]

D. Lawden, "Elliptic Functions and Applications,'', Applied mathematical sciences, (1989).

[12]

H. Poincaré, Sur les lignes géodésiques des surfaces convexes,, (French) [On the geodesic lines of convex surfaces] Trans. Amer. Math. Soc., 6 (1905), 237. doi: 10.2307/1986219.

[13]

K. Shiohama, T. Shioya and M. Tanaka, "The Geometry of Total Curvature on Complete Open Surfaces,'', Cambridge tracts in mathematics, (2003). doi: 10.1017/CBO9780511543159.

[14]

R. Sinclair and M. Tanaka, The cut locus of a two-sphere of revolution and toponogov's comparison theorem,, Tohoku Math. J. (2), 59 (2007), 379. doi: 10.2748/tmj/1192117984.

[15]

A. M. Vershik and V. Ya. Gershkovich, Nonholonomic dynamical systems, geometry of distributions, and variational problems,, vol. 16 of Dynamical Systems VII, 16 (1994), 1.

[16]

H. Yuan, R. Zeier, N. Khaneja and S. Lloyd, Constructing two-qubit gates with minimal couplings,, Phys. Rev. A (3), 79 (2009). doi: 10.1103/PhysRevA.79.042309.

show all references

References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", Translated from the Russian by K. Vogtmann and A. Weinstein, (1989).

[2]

L. Bates and F. Fassò, The conjugate locus for the euler top. I. The axisymmetric case,, Int. Math. Forum, 2 (2007), 2109.

[3]

B. Bonnard, Contrôlabilité de systemes mécaniques sur les groupes de lie (French), [controllability of mechanical systems on lie groups],, SIAM J. Control Optim., 22 (1984), 711. doi: 10.1137/0322045.

[4]

B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1081. doi: 10.1016/j.anihpc.2008.03.010.

[5]

B. Bonnard, O. Cots and N. Shcherbakova, Energy minimization problem in two-level dissipative quantum control: Meridian case,, J. Math. Sci., (2013).

[6]

M. do Carmo, "Riemannian Geometry,'' Translated from the second Portuguese edition by Francis Flaherty,, Mathematics: Theory & Applications. Birkhäuser Boston, (1992).

[7]

P. Gurfil, A. Elipe, W. Tangren and M. Efroimsky, The Serret-Andoyer formalism in rigid-body dynamics. I. Symmetries and perturbations,, Regul. Chaotic Dyn., 12 (2007), 389. doi: 10.1134/S156035470704003X.

[8]

J. Itoh and K. Kiyohara, The cut loci and the conjugate loci on ellipsoids,, Manuscripta Math., 114 (2004), 247. doi: 10.1007/s00229-004-0455-z.

[9]

V. Jurdjevic, "Geometric Control Theory,'', Cambridge studies in advanced mathematics, (1997).

[10]

M. Lara and S. Ferrer, Closed form integration of the Hitzl-Breakwell problem in action-angle variables,, IAA-AAS-DyCoSS1-01-02 (AAS 12-302), (): 1.

[11]

D. Lawden, "Elliptic Functions and Applications,'', Applied mathematical sciences, (1989).

[12]

H. Poincaré, Sur les lignes géodésiques des surfaces convexes,, (French) [On the geodesic lines of convex surfaces] Trans. Amer. Math. Soc., 6 (1905), 237. doi: 10.2307/1986219.

[13]

K. Shiohama, T. Shioya and M. Tanaka, "The Geometry of Total Curvature on Complete Open Surfaces,'', Cambridge tracts in mathematics, (2003). doi: 10.1017/CBO9780511543159.

[14]

R. Sinclair and M. Tanaka, The cut locus of a two-sphere of revolution and toponogov's comparison theorem,, Tohoku Math. J. (2), 59 (2007), 379. doi: 10.2748/tmj/1192117984.

[15]

A. M. Vershik and V. Ya. Gershkovich, Nonholonomic dynamical systems, geometry of distributions, and variational problems,, vol. 16 of Dynamical Systems VII, 16 (1994), 1.

[16]

H. Yuan, R. Zeier, N. Khaneja and S. Lloyd, Constructing two-qubit gates with minimal couplings,, Phys. Rev. A (3), 79 (2009). doi: 10.1103/PhysRevA.79.042309.

[1]

Šárka Nečasová, Joerg Wolf. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1539-1562. doi: 10.3934/dcds.2016.36.1539

[2]

Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks & Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597

[3]

Sebastián Ferrer, Francisco J. Molero. Andoyer's variables and phases in the free rigid body. Journal of Geometric Mechanics, 2014, 6 (1) : 25-37. doi: 10.3934/jgm.2014.6.25

[4]

Giancarlo Benettin, Anna Maria Cherubini, Francesco Fassò. Regular and chaotic motions of the fast rotating rigid body: a numerical study. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 521-540. doi: 10.3934/dcdsb.2002.2.521

[5]

Giancarlo Benettin, Massimiliano Guzzo, Anatoly Neishtadt. A new problem of adiabatic invariance related to the rigid body dynamics. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 959-975. doi: 10.3934/dcds.2008.21.959

[6]

Johannes Elschner, Guanghui Hu, Masahiro Yamamoto. Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type. Inverse Problems & Imaging, 2015, 9 (1) : 127-141. doi: 10.3934/ipi.2015.9.127

[7]

Dmitriy Chebanov. New class of exact solutions for the equations of motion of a chain of $n$ rigid bodies. Conference Publications, 2013, 2013 (special) : 105-113. doi: 10.3934/proc.2013.2013.105

[8]

Miroslav Bulíček, Eduard Feireisl, Josef Málek, Roman Shvydkoy. On the motion of incompressible inhomogeneous Euler-Korteweg fluids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 497-515. doi: 10.3934/dcdss.2010.3.497

[9]

Frederic Gabern, Àngel Jorba, Philippe Robutel. On the accuracy of restricted three-body models for the Trojan motion. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 843-854. doi: 10.3934/dcds.2004.11.843

[10]

Hiroshi Ozaki, Hiroshi Fukuda, Toshiaki Fujiwara. Determination of motion from orbit in the three-body problem. Conference Publications, 2011, 2011 (Special) : 1158-1166. doi: 10.3934/proc.2011.2011.1158

[11]

Paul Deuring, Stanislav Kračmar, Šárka Nečasová. A leading term for the velocity of stationary viscous incompressible flow around a rigid body performing a rotation and a translation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1389-1409. doi: 10.3934/dcds.2017057

[12]

Matthias Hieber, Miho Murata. The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids. Evolution Equations & Control Theory, 2015, 4 (1) : 69-87. doi: 10.3934/eect.2015.4.69

[13]

Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417

[14]

Bernard Ducomet, Šárka Nečasová. On the motion of rigid bodies in an incompressible or compressible viscous fluid under the action of gravitational forces. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1193-1213. doi: 10.3934/dcdss.2013.6.1193

[15]

Reinhard Farwig, Ronald B. Guenther, Enrique A. Thomann, Šárka Nečasová. The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 511-529. doi: 10.3934/dcds.2014.34.511

[16]

Hinke M. Osinga, James Rankin. Two-parameter locus of boundary crisis: Mind the gaps!. Conference Publications, 2011, 2011 (Special) : 1148-1157. doi: 10.3934/proc.2011.2011.1148

[17]

Dag Lukkassen, Annette Meidell, Peter Wall. On the conjugate of periodic piecewise harmonic functions. Networks & Heterogeneous Media, 2008, 3 (3) : 633-646. doi: 10.3934/nhm.2008.3.633

[18]

Leonid A. Bunimovich, Alex Yurchenko. Deterministic walks in rigid environments with aging. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 37-46. doi: 10.3934/dcdsb.2008.9.37

[19]

David Cowan. Rigid particle systems and their billiard models. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1/2) : 111-130. doi: 10.3934/dcds.2008.22.111

[20]

Cédric Villani. Regularity of optimal transport and cut locus: From nonsmooth analysis to geometry to smooth analysis. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 559-571. doi: 10.3934/dcds.2011.30.559

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (4)

[Back to Top]