2013, 5(3): 365-379. doi: 10.3934/jgm.2013.5.365

Variational formulation of commuting Hamiltonian flows: Multi-time Lagrangian 1-forms

1. 

Institut für Mathematik, MA 7-2, Technische Universität Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany

Received  December 2012 Revised  August 2013 Published  September 2013

Recently, Lobb and Nijhoff initiated the study of variational (Lagrangian) structure of discrete integrable systems from the perspective of multi-dimensional consistency. In the present work, we follow this line of research and develop a Lagrangian theory of integrable one-dimensional systems. We give a complete solution of the following problem: one looks for a function of several variables (interpreted as multi-time) which delivers critical points to the action functionals obtained by integrating a Lagrangian 1-form along any smooth curve in the multi-time. The Lagrangian 1-form is supposed to depend on the first jet of the sought-after function. We derive the corresponding multi-time Euler-Lagrange equations and show that, under the multi-time Legendre transform, they are equivalent to a system of commuting Hamiltonian flows. Involutivity of the Hamilton functions turns out to be equivalent to closeness of the Lagrangian 1-form on solutions of the multi-time Euler-Lagrange equations. In the discrete time context, the analogous extremal property turns out to be characteristic for systems of commuting symplectic maps. For one-parameter families of commuting symplectic maps (Bäcklund transformations), we show that their spectrality property, introduced by Kuznetsov and Sklyanin, is equivalent to the property of the Lagrangian 1-form to be closed on solutions of the multi-time Euler-Lagrange equations, and propose a procedure of constructing Lax representations with the only input being the maps themselves.
Citation: Yuri B. Suris. Variational formulation of commuting Hamiltonian flows: Multi-time Lagrangian 1-forms. Journal of Geometric Mechanics, 2013, 5 (3) : 365-379. doi: 10.3934/jgm.2013.5.365
References:
[1]

V. E. Adler, A. I. Bobenko and Yu. B. Suris, Classification of integrable equations on quad-graphs. The consistency approach,, Commun. Math. Phys., 233 (2003), 513.

[2]

A. I. Bobenko and Yu. B. Suris, Integrable systems on quad-graphs,, International Mathematics Research Notices, 2002 (2002), 573. doi: 10.1155/S1073792802110075.

[3]

A. I. Bobenko and Yu. B. Suris, "Discrete Differential Geometry. Integrable Structure,", Graduate Studies in Mathematics, (2008).

[4]

A. I. Bobenko and Yu. B. Suris, On the Lagrangian structure of integrable quad-equations,, Letters in Mathematical Physics, 92 (2010), 17. doi: 10.1007/s11005-010-0381-9.

[5]

R. Boll, M. Petrera and Yu. B. Suris, Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Toda-type systems,, Journal of Physics A: Mathematical and Theoretical, 46 (2013). doi: 10.1088/1751-8113/46/27/275204.

[6]

V. B. Kuznetsov and E. K. Sklyanin, On Bäcklund transformations for many-body systems,, Journal of Physics A: Mathematical and General, 31 (1998), 2241. doi: 10.1088/0305-4470/31/9/012.

[7]

S. B. Lobb and F. W. Nijhoff, Lagrangian multiforms and multidimensional consistency,, Journal of Physics A: Mathematical and Theoretical, 42 (2009). doi: 10.1088/1751-8113/42/45/454013.

[8]

S. B. Lobb and F. W. Nijhoff, Lagrangian multiform structure for the lattice Gel'fand-Dikii hierarchy,, Journal of Physics A: Mathematical and Theoretical, 43 (2010). doi: 10.1088/1751-8113/43/7/072003.

[9]

S. B. Lobb, F. W. Nijhoff and G. R. W. Quispel, Lagrangian multiform structure for the lattice KP system,, Journal of Physics A: Mathematical and Theoretical, 42 (2009). doi: 10.1088/1751-8113/42/47/472002.

[10]

J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials,, Communications in Mathematical Physics, 139 (1991), 217. doi: 10.1007/BF02352494.

[11]

F. W. Nijhoff, Lax pair for the Adler (lattice Krichever-Novikov) system,, Physics Letters A, 297 (2002), 49. doi: 10.1016/S0375-9601(02)00287-6.

[12]

J. Roels and A. Weinstein, Functions whose Poisson brackets are constants,, Journal of Mathematical Physics, 12 (1971), 1482. doi: 10.1063/1.1665760.

[13]

N. Román-Roy, Á.M. Rey, M. Salgado and S. Vilariño, On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories,, J. Geom. Mech., 3 (2011), 113.

[14]

Yu. B. Suris, "The Problem of Integrable Discretization: Hamiltonian Approach,", Progress in Mathematics, (2003). doi: 10.1007/978-3-0348-8016-9.

[15]

M. Wadati and M. Toda, Bäcklund transformation for the exponential lattice,, Journal of the Physical Society of Japan, 39 (1975), 1196. doi: 10.1143/JPSJ.39.1196.

[16]

S. Yoo-Kong, S. Lobb and F. W. Nijhoff, Discrete-time Calogero-Moser system and Lagrangian 1-form structure,, Journal of Physics A: Mathematical and Theoretical, 44 (2011). doi: 10.1088/1751-8113/44/36/365203.

show all references

References:
[1]

V. E. Adler, A. I. Bobenko and Yu. B. Suris, Classification of integrable equations on quad-graphs. The consistency approach,, Commun. Math. Phys., 233 (2003), 513.

[2]

A. I. Bobenko and Yu. B. Suris, Integrable systems on quad-graphs,, International Mathematics Research Notices, 2002 (2002), 573. doi: 10.1155/S1073792802110075.

[3]

A. I. Bobenko and Yu. B. Suris, "Discrete Differential Geometry. Integrable Structure,", Graduate Studies in Mathematics, (2008).

[4]

A. I. Bobenko and Yu. B. Suris, On the Lagrangian structure of integrable quad-equations,, Letters in Mathematical Physics, 92 (2010), 17. doi: 10.1007/s11005-010-0381-9.

[5]

R. Boll, M. Petrera and Yu. B. Suris, Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Toda-type systems,, Journal of Physics A: Mathematical and Theoretical, 46 (2013). doi: 10.1088/1751-8113/46/27/275204.

[6]

V. B. Kuznetsov and E. K. Sklyanin, On Bäcklund transformations for many-body systems,, Journal of Physics A: Mathematical and General, 31 (1998), 2241. doi: 10.1088/0305-4470/31/9/012.

[7]

S. B. Lobb and F. W. Nijhoff, Lagrangian multiforms and multidimensional consistency,, Journal of Physics A: Mathematical and Theoretical, 42 (2009). doi: 10.1088/1751-8113/42/45/454013.

[8]

S. B. Lobb and F. W. Nijhoff, Lagrangian multiform structure for the lattice Gel'fand-Dikii hierarchy,, Journal of Physics A: Mathematical and Theoretical, 43 (2010). doi: 10.1088/1751-8113/43/7/072003.

[9]

S. B. Lobb, F. W. Nijhoff and G. R. W. Quispel, Lagrangian multiform structure for the lattice KP system,, Journal of Physics A: Mathematical and Theoretical, 42 (2009). doi: 10.1088/1751-8113/42/47/472002.

[10]

J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials,, Communications in Mathematical Physics, 139 (1991), 217. doi: 10.1007/BF02352494.

[11]

F. W. Nijhoff, Lax pair for the Adler (lattice Krichever-Novikov) system,, Physics Letters A, 297 (2002), 49. doi: 10.1016/S0375-9601(02)00287-6.

[12]

J. Roels and A. Weinstein, Functions whose Poisson brackets are constants,, Journal of Mathematical Physics, 12 (1971), 1482. doi: 10.1063/1.1665760.

[13]

N. Román-Roy, Á.M. Rey, M. Salgado and S. Vilariño, On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories,, J. Geom. Mech., 3 (2011), 113.

[14]

Yu. B. Suris, "The Problem of Integrable Discretization: Hamiltonian Approach,", Progress in Mathematics, (2003). doi: 10.1007/978-3-0348-8016-9.

[15]

M. Wadati and M. Toda, Bäcklund transformation for the exponential lattice,, Journal of the Physical Society of Japan, 39 (1975), 1196. doi: 10.1143/JPSJ.39.1196.

[16]

S. Yoo-Kong, S. Lobb and F. W. Nijhoff, Discrete-time Calogero-Moser system and Lagrangian 1-form structure,, Journal of Physics A: Mathematical and Theoretical, 44 (2011). doi: 10.1088/1751-8113/44/36/365203.

[1]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[2]

P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1

[3]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[4]

Gennadi Sardanashvily. Lagrangian dynamics of submanifolds. Relativistic mechanics. Journal of Geometric Mechanics, 2012, 4 (1) : 99-110. doi: 10.3934/jgm.2012.4.99

[5]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[6]

B. Buffoni, F. Giannoni. Brake periodic orbits of prescribed Hamiltonian for indefinite Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 217-222. doi: 10.3934/dcds.1995.1.217

[7]

Harish S. Bhat, Razvan C. Fetecau. Lagrangian averaging for the 1D compressible Euler equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 979-1000. doi: 10.3934/dcdsb.2006.6.979

[8]

Janusz Grabowski, Katarzyna Grabowska, Paweł Urbański. Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings. Journal of Geometric Mechanics, 2014, 6 (4) : 503-526. doi: 10.3934/jgm.2014.6.503

[9]

Katarzyna Grabowska. Lagrangian and Hamiltonian formalism in Field Theory: A simple model. Journal of Geometric Mechanics, 2010, 2 (4) : 375-395. doi: 10.3934/jgm.2010.2.375

[10]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[11]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[12]

Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[13]

Marie-Claude Arnaud. When are the invariant submanifolds of symplectic dynamics Lagrangian?. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1811-1827. doi: 10.3934/dcds.2014.34.1811

[14]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure & Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[15]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[16]

Nicolás Borda, Javier Fernández, Sergio Grillo. Discrete second order constrained Lagrangian systems: First results. Journal of Geometric Mechanics, 2013, 5 (4) : 381-397. doi: 10.3934/jgm.2013.5.381

[17]

Eliot Fried. New insights into the classical mechanics of particle systems. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1469-1504. doi: 10.3934/dcds.2010.28.1469

[18]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

[19]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez, Patrícia Santos. On the virial theorem for nonholonomic Lagrangian systems. Conference Publications, 2015, 2015 (special) : 204-212. doi: 10.3934/proc.2015.0204

[20]

Alicia Cordero, José Martínez Alfaro, Pura Vindel. Bott integrable Hamiltonian systems on $S^{2}\times S^{1}$. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 587-604. doi: 10.3934/dcds.2008.22.587

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]