2014, 34(4): 1319-1338. doi: 10.3934/dcds.2014.34.1319

Uniqueness for Keller-Segel-type chemotaxis models

1. 

Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom

2. 

Università degli Studi di Pavia, Dipartimento di Matematica “F. Casorati”, via Ferrata 1, 27100 Pavia

3. 

Dipartimento di Ingegneria meccanica, energetica, gestionale e dei trasporti (DIME), Università degli Studi di Genova, P.le Kennedy 1, 16129 Genova, Italy

Received  December 2012 Revised  April 2013 Published  October 2013

We prove uniqueness in the class of integrable and bounded nonnegative solutions in the energy sense to the Keller-Segel (KS) chemotaxis system. Our proof works for the fully parabolic KS model, it includes the classical parabolic-elliptic KS equation as a particular case, and it can be generalized to nonlinear diffusions in the particle density equation as long as the diffusion satisfies the classical McCann displacement convexity condition. The strategy uses Quasi-Lipschitz estimates for the chemoattractant equation and the above-the-tangent characterizations of displacement convexity. As a consequence, the displacement convexity of the free energy functional associated to the KS system is obtained from its evolution for bounded integrable initial data.
Citation: José Antonio Carrillo, Stefano Lisini, Edoardo Mainini. Uniqueness for Keller-Segel-type chemotaxis models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1319-1338. doi: 10.3934/dcds.2014.34.1319
References:
[1]

P. Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations,, Differential Integral Equations, 1 (1988), 433.

[2]

L. Ambrosio and N. Gigli, A user's guide to optimal transport,, in, (2013), 1. doi: 10.1007/978-3-642-32160-3_1.

[3]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Spaces of Probability Measures,'', Lectures in Mathematics ETH Zürich, (2005).

[4]

L. Ambrosio, E. Mainini and S. Serfaty, Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 217. doi: 10.1016/j.anihpc.2010.11.006.

[5]

L. Ambrosio and S. Serfaty, A gradient flow approach to an evolution problem arising in superconductivity,, Comm. Pure Appl. Math., 61 (2008), 1495. doi: 10.1002/cpa.20223.

[6]

A. L. Bertozzi, T. Laurent and F. Léger, Aggregation and spreading via the Newtonian potential: The dynamics of patch solutions,, Math. Mod. Meth. Appl. Sci., 22 (2012). doi: 10.1142/S0218202511400057.

[7]

A. L. Bertozzi, T. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation,, Comm. Pure Appl. Math., 64 (2011), 45. doi: 10.1002/cpa.20334.

[8]

P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis,, Adv. Math. Sci. Appl., 9 (1999), 347.

[9]

A. Blanchet, V. Calvez and J. A. Carrillo, Convergence of the mass-transport steepest descent scheme for the sub-critical Patlak-Keller-Segel model,, SIAM J. Numer. Anal., 46 (2008), 691. doi: 10.1137/070683337.

[10]

A. Blanchet, E. Carlen and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model,, J. Func. Anal., 262 (2012), 2142. doi: 10.1016/j.jfa.2011.12.012.

[11]

A. Blanchet, J. A. Carrillo and P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions,, Calc. Var. Partial Differential Equations, 35 (2009), 133. doi: 10.1007/s00526-008-0200-7.

[12]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions,, Electron. J. Differential Equations, 2006 ().

[13]

A. Blanchet and P. Laurençot, The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in $R^d$, $d\ge 3$,, Communication in Partial Differential Equations, 38 (2013), 658. doi: 10.1080/03605302.2012.757705.

[14]

V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: Energy estimates preventing blow-up,, J. Math. Pure Appl. (9), 86 (2006), 155. doi: 10.1016/j.matpur.2006.04.002.

[15]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbbR^2$,, Commun. Math. Sci., 6 (2008), 417.

[16]

S. Campanato, Equazioni paraboliche del secondo ordine e spazi $L^{2,\theta}(\Omega,\delta)$,, (Italian), 73 (1966), 55. doi: 10.1007/BF02415082.

[17]

J. F. Campos and J. Dolbeault, Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane,, preprint, ().

[18]

J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the $2$-Wasserstein length space and thermalization of granular media,, Arch. Rat. Mech. Anal., 179 (2006), 217. doi: 10.1007/s00205-005-0386-1.

[19]

J. A. Carrillo and J. Rosado, Uniqueness of bounded solutions to aggregation equations by optimal transport methods,, in, (2010), 3. doi: 10.4171/077-1/1.

[20]

L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions,, Milan J. Math., 72 (2004), 1. doi: 10.1007/s00032-003-0026-x.

[21]

L. Corrias, B. Perthame and H. Zaag, $L^p$ and $L^\infty$ a priori estimates for some chemotaxis models and applications to the Cauchy problem,, in, (2004).

[22]

S. Daneri and G. Savaré, Eulerian calculus for the displacement convexity in the Wasserstein distance,, SIAM J. Math. Anal., 40 (2008), 1104. doi: 10.1137/08071346X.

[23]

I. Kim and Y. Yao, The Patlak-Keller-Segel model and its variations: Properties of solutions via maximum principle,, SIAM J. Math. Anal., 44 (2012), 568. doi: 10.1137/110823584.

[24]

A. N. Konënkov, The Cauchy problem for the heat equation in Zygmund spaces,, (Russian) Differ. Uravn., 41 (2005), 820. doi: 10.1007/s10625-005-0225-z.

[25]

R. Kowalczyk, Preventing blow-up in a chemotaxis model,, J. Math. Anal. Appl., 305 (2005), 566. doi: 10.1016/j.jmaa.2004.12.009.

[26]

R. Kowalczyk and Z. Szymańska}, On the global existence of solutions to an aggregation model,, J. Math. Anal. Appl., 343 (2008), 379. doi: 10.1016/j.jmaa.2008.01.005.

[27]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type,'', (Russian), (1968).

[28]

G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded densitiy,, J. Math. Pures Appl. (9), 86 (2006), 68. doi: 10.1016/j.matpur.2006.01.005.

[29]

E. Mainini, A global uniqueness result for an evolution problem arising in superconductivity,, Boll. Unione Mat. Ital. (9), 2 (2009), 509.

[30]

E. Mainini, Well-posedness for a mean field model of Ginzburg-Landau vortices with opposite degrees,, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 133. doi: 10.1007/s00030-011-0121-6.

[31]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,'', Cambridge Texts Appl. Math., (2002).

[32]

R. McCann, A convexity principle for interacting gases,, Adv. Math., 128 (1997), 153. doi: 10.1006/aima.1997.1634.

[33]

S. Serfaty and J. L. Vazquez, A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators,, to appear in Calc. Var. PDEs., (). doi: 10.1007/s00526-013-0613-9.

[34]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,'', Princeton Mathematical Series, (1970).

[35]

V. Yudovich, Nonstationary flow of an ideal incompressible liquid,, Zhurn. Vych. Mat., 3 (1963), 1032.

[36]

A. Zygmund, Smooth functions,, Duke Math. J., 12 (1945), 47. doi: 10.1215/S0012-7094-45-01206-3.

[37]

A. Zygmund, "Trigonometric Series,'', Vol. I, (2002).

show all references

References:
[1]

P. Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations,, Differential Integral Equations, 1 (1988), 433.

[2]

L. Ambrosio and N. Gigli, A user's guide to optimal transport,, in, (2013), 1. doi: 10.1007/978-3-642-32160-3_1.

[3]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Spaces of Probability Measures,'', Lectures in Mathematics ETH Zürich, (2005).

[4]

L. Ambrosio, E. Mainini and S. Serfaty, Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 217. doi: 10.1016/j.anihpc.2010.11.006.

[5]

L. Ambrosio and S. Serfaty, A gradient flow approach to an evolution problem arising in superconductivity,, Comm. Pure Appl. Math., 61 (2008), 1495. doi: 10.1002/cpa.20223.

[6]

A. L. Bertozzi, T. Laurent and F. Léger, Aggregation and spreading via the Newtonian potential: The dynamics of patch solutions,, Math. Mod. Meth. Appl. Sci., 22 (2012). doi: 10.1142/S0218202511400057.

[7]

A. L. Bertozzi, T. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation,, Comm. Pure Appl. Math., 64 (2011), 45. doi: 10.1002/cpa.20334.

[8]

P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis,, Adv. Math. Sci. Appl., 9 (1999), 347.

[9]

A. Blanchet, V. Calvez and J. A. Carrillo, Convergence of the mass-transport steepest descent scheme for the sub-critical Patlak-Keller-Segel model,, SIAM J. Numer. Anal., 46 (2008), 691. doi: 10.1137/070683337.

[10]

A. Blanchet, E. Carlen and J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model,, J. Func. Anal., 262 (2012), 2142. doi: 10.1016/j.jfa.2011.12.012.

[11]

A. Blanchet, J. A. Carrillo and P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions,, Calc. Var. Partial Differential Equations, 35 (2009), 133. doi: 10.1007/s00526-008-0200-7.

[12]

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions,, Electron. J. Differential Equations, 2006 ().

[13]

A. Blanchet and P. Laurençot, The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in $R^d$, $d\ge 3$,, Communication in Partial Differential Equations, 38 (2013), 658. doi: 10.1080/03605302.2012.757705.

[14]

V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: Energy estimates preventing blow-up,, J. Math. Pure Appl. (9), 86 (2006), 155. doi: 10.1016/j.matpur.2006.04.002.

[15]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbbR^2$,, Commun. Math. Sci., 6 (2008), 417.

[16]

S. Campanato, Equazioni paraboliche del secondo ordine e spazi $L^{2,\theta}(\Omega,\delta)$,, (Italian), 73 (1966), 55. doi: 10.1007/BF02415082.

[17]

J. F. Campos and J. Dolbeault, Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane,, preprint, ().

[18]

J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the $2$-Wasserstein length space and thermalization of granular media,, Arch. Rat. Mech. Anal., 179 (2006), 217. doi: 10.1007/s00205-005-0386-1.

[19]

J. A. Carrillo and J. Rosado, Uniqueness of bounded solutions to aggregation equations by optimal transport methods,, in, (2010), 3. doi: 10.4171/077-1/1.

[20]

L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions,, Milan J. Math., 72 (2004), 1. doi: 10.1007/s00032-003-0026-x.

[21]

L. Corrias, B. Perthame and H. Zaag, $L^p$ and $L^\infty$ a priori estimates for some chemotaxis models and applications to the Cauchy problem,, in, (2004).

[22]

S. Daneri and G. Savaré, Eulerian calculus for the displacement convexity in the Wasserstein distance,, SIAM J. Math. Anal., 40 (2008), 1104. doi: 10.1137/08071346X.

[23]

I. Kim and Y. Yao, The Patlak-Keller-Segel model and its variations: Properties of solutions via maximum principle,, SIAM J. Math. Anal., 44 (2012), 568. doi: 10.1137/110823584.

[24]

A. N. Konënkov, The Cauchy problem for the heat equation in Zygmund spaces,, (Russian) Differ. Uravn., 41 (2005), 820. doi: 10.1007/s10625-005-0225-z.

[25]

R. Kowalczyk, Preventing blow-up in a chemotaxis model,, J. Math. Anal. Appl., 305 (2005), 566. doi: 10.1016/j.jmaa.2004.12.009.

[26]

R. Kowalczyk and Z. Szymańska}, On the global existence of solutions to an aggregation model,, J. Math. Anal. Appl., 343 (2008), 379. doi: 10.1016/j.jmaa.2008.01.005.

[27]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type,'', (Russian), (1968).

[28]

G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded densitiy,, J. Math. Pures Appl. (9), 86 (2006), 68. doi: 10.1016/j.matpur.2006.01.005.

[29]

E. Mainini, A global uniqueness result for an evolution problem arising in superconductivity,, Boll. Unione Mat. Ital. (9), 2 (2009), 509.

[30]

E. Mainini, Well-posedness for a mean field model of Ginzburg-Landau vortices with opposite degrees,, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 133. doi: 10.1007/s00030-011-0121-6.

[31]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,'', Cambridge Texts Appl. Math., (2002).

[32]

R. McCann, A convexity principle for interacting gases,, Adv. Math., 128 (1997), 153. doi: 10.1006/aima.1997.1634.

[33]

S. Serfaty and J. L. Vazquez, A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators,, to appear in Calc. Var. PDEs., (). doi: 10.1007/s00526-013-0613-9.

[34]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,'', Princeton Mathematical Series, (1970).

[35]

V. Yudovich, Nonstationary flow of an ideal incompressible liquid,, Zhurn. Vych. Mat., 3 (1963), 1032.

[36]

A. Zygmund, Smooth functions,, Duke Math. J., 12 (1945), 47. doi: 10.1215/S0012-7094-45-01206-3.

[37]

A. Zygmund, "Trigonometric Series,'', Vol. I, (2002).

[1]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[2]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[3]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[4]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

[5]

Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717

[6]

Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339

[7]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[8]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[9]

Tian Xiang. On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4911-4946. doi: 10.3934/dcds.2014.34.4911

[10]

Sachiko Ishida, Yusuke Maeda, Tomomi Yokota. Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2537-2568. doi: 10.3934/dcdsb.2013.18.2537

[11]

Jean Dolbeault, Christian Schmeiser. The two-dimensional Keller-Segel model after blow-up. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 109-121. doi: 10.3934/dcds.2009.25.109

[12]

Shen Bian, Jian-Guo Liu, Chen Zou. Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$. Kinetic & Related Models, 2014, 7 (1) : 9-28. doi: 10.3934/krm.2014.7.9

[13]

Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015

[14]

Xinru Cao. Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3369-3378. doi: 10.3934/dcdsb.2017141

[15]

Tohru Tsujikawa, Kousuke Kuto, Yasuhito Miyamoto, Hirofumi Izuhara. Stationary solutions for some shadow system of the Keller-Segel model with logistic growth. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 1023-1034. doi: 10.3934/dcdss.2015.8.1023

[16]

Karoline Disser, Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks & Heterogeneous Media, 2015, 10 (2) : 233-253. doi: 10.3934/nhm.2015.10.233

[17]

Qi Wang, Lu Zhang, Jingyue Yang, Jia Hu. Global existence and steady states of a two competing species Keller--Segel chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 777-807. doi: 10.3934/krm.2015.8.777

[18]

Sachiko Ishida. An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems. Conference Publications, 2015, 2015 (special) : 635-643. doi: 10.3934/proc.2015.0635

[19]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[20]

Jaewook Ahn, Kyungkeun Kang. On a Keller-Segel system with logarithmic sensitivity and non-diffusive chemical. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5165-5179. doi: 10.3934/dcds.2014.34.5165

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (12)

[Back to Top]