2014, 34(4): 1355-1374. doi: 10.3934/dcds.2014.34.1355

Gradient flow structures for discrete porous medium equations

1. 

University of Bonn, Institute for Applied Mathematics, Endenicher Allee 60, 53115 Bonn, Germany, Germany

Received  December 2012 Revised  March 2013 Published  October 2013

We consider discrete porous medium equations of the form $\partial_t\rho_t = \Delta \phi(\rho_t)$, where $\Delta$ is the generator of a reversible continuous time Markov chain on a finite set $\boldsymbol{\chi} $, and $\phi$ is an increasing function. We show that these equations arise as gradient flows of certain entropy functionals with respect to suitable non-local transportation metrics. This may be seen as a discrete analogue of the Wasserstein gradient flow structure for porous medium equations in $\mathbb{R}^n$ discovered by Otto. We present a one-dimensional counterexample to geodesic convexity and discuss Gromov-Hausdorff convergence to the Wasserstein metric.
Citation: Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Second edition, (2008).

[2]

L. Ambrosio, N. Gigli and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below,, , (2012).

[3]

J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem,, Numer. Math., 84 (2000), 375. doi: 10.1007/s002110050002.

[4]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", North-Holland Mathematics Studies, (1973).

[5]

E. Carlen and J. Maas, An analog of the 2-Wasserstein metric in non-commutative probability under which the fermionic Fokker-Planck equation is gradient flow for the entropy,, to appear in Comm. Math. Phys., (2012).

[6]

S.-N. Chow, W. Huang, Y. Li and H. Zhou, Fokker-Planck equations for a free energy functional or Markov process on a graph,, Arch. Ration. Mech. Anal., 203 (2012), 969. doi: 10.1007/s00205-011-0471-6.

[7]

S. Daneri and G. Savaré, Eulerian calculus for the displacement convexity in the Wasserstein distance,, SIAM J. Math. Anal., 40 (2008), 1104. doi: 10.1137/08071346X.

[8]

M. Erbar, Gradient flows of the entropy for jump processes,, to appear in Ann. Inst. Henri Poincaré Probab. Stat., (2012).

[9]

M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy,, Arch. Ration. Mech. Anal., 206 (2012), 997. doi: 10.1007/s00205-012-0554-z.

[10]

N. Gigli and J. Maas, Gromov-Hausdorff convergence of discrete transportation metrics,, SIAM J. Math. Anal., 45 (2013), 879. doi: 10.1137/120886315.

[11]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1. doi: 10.1137/S0036141096303359.

[12]

J. Maas, Gradient flows of the entropy for finite Markov chains,, J. Funct. Anal., 261 (2011), 2250. doi: 10.1016/j.jfa.2011.06.009.

[13]

R. J. McCann, A convexity principle for interacting gases,, Adv. Math., 128 (1997), 153. doi: 10.1006/aima.1997.1634.

[14]

A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains,, Calc. Var. Partial Differential Equations, 48 (2013), 1. doi: 10.1007/s00526-012-0538-8.

[15]

A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems,, Nonlinearity, 24 (2011), 1329. doi: 10.1088/0951-7715/24/4/016.

[16]

A. Mielke, Dissipative quantum mechanics using GENERIC,, To appear in Proc. of the conference, (2013).

[17]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101. doi: 10.1081/PDE-100002243.

[18]

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality,, J. Funct. Anal., 173 (2000), 361. doi: 10.1006/jfan.1999.3557.

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Second edition, (2008).

[2]

L. Ambrosio, N. Gigli and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below,, , (2012).

[3]

J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem,, Numer. Math., 84 (2000), 375. doi: 10.1007/s002110050002.

[4]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", North-Holland Mathematics Studies, (1973).

[5]

E. Carlen and J. Maas, An analog of the 2-Wasserstein metric in non-commutative probability under which the fermionic Fokker-Planck equation is gradient flow for the entropy,, to appear in Comm. Math. Phys., (2012).

[6]

S.-N. Chow, W. Huang, Y. Li and H. Zhou, Fokker-Planck equations for a free energy functional or Markov process on a graph,, Arch. Ration. Mech. Anal., 203 (2012), 969. doi: 10.1007/s00205-011-0471-6.

[7]

S. Daneri and G. Savaré, Eulerian calculus for the displacement convexity in the Wasserstein distance,, SIAM J. Math. Anal., 40 (2008), 1104. doi: 10.1137/08071346X.

[8]

M. Erbar, Gradient flows of the entropy for jump processes,, to appear in Ann. Inst. Henri Poincaré Probab. Stat., (2012).

[9]

M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy,, Arch. Ration. Mech. Anal., 206 (2012), 997. doi: 10.1007/s00205-012-0554-z.

[10]

N. Gigli and J. Maas, Gromov-Hausdorff convergence of discrete transportation metrics,, SIAM J. Math. Anal., 45 (2013), 879. doi: 10.1137/120886315.

[11]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1. doi: 10.1137/S0036141096303359.

[12]

J. Maas, Gradient flows of the entropy for finite Markov chains,, J. Funct. Anal., 261 (2011), 2250. doi: 10.1016/j.jfa.2011.06.009.

[13]

R. J. McCann, A convexity principle for interacting gases,, Adv. Math., 128 (1997), 153. doi: 10.1006/aima.1997.1634.

[14]

A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains,, Calc. Var. Partial Differential Equations, 48 (2013), 1. doi: 10.1007/s00526-012-0538-8.

[15]

A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems,, Nonlinearity, 24 (2011), 1329. doi: 10.1088/0951-7715/24/4/016.

[16]

A. Mielke, Dissipative quantum mechanics using GENERIC,, To appear in Proc. of the conference, (2013).

[17]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101. doi: 10.1081/PDE-100002243.

[18]

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality,, J. Funct. Anal., 173 (2000), 361. doi: 10.1006/jfan.1999.3557.

[1]

Milton Ko. Rényi entropy and recurrence. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2403-2421. doi: 10.3934/dcds.2013.33.2403

[2]

Yu-Zhao Wang. $ \mathcal{W}$-Entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2441-2454. doi: 10.3934/cpaa.2018116

[3]

Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

[4]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[5]

Yuanhong Wei, Xifeng Su. On a class of non-local elliptic equations with asymptotically linear term. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6287-6304. doi: 10.3934/dcds.2018154

[6]

Ansgar Jüngel, Ingrid Violet. Mixed entropy estimates for the porous-medium equation with convection. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 783-796. doi: 10.3934/dcdsb.2009.12.783

[7]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[8]

Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511

[9]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[10]

Raffaella Servadei, Enrico Valdinoci. A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2445-2464. doi: 10.3934/cpaa.2013.12.2445

[11]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[12]

Imran H. Biswas, Indranil Chowdhury. On the differentiability of the solutions of non-local Isaacs equations involving $\frac{1}{2}$-Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 907-927. doi: 10.3934/cpaa.2016.15.907

[13]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[14]

Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055

[15]

Jing Li, Yifu Wang, Jingxue Yin. Non-sharp travelling waves for a dual porous medium equation. Communications on Pure & Applied Analysis, 2016, 15 (2) : 623-636. doi: 10.3934/cpaa.2016.15.623

[16]

Goro Akagi. Energy solutions of the Cauchy-Neumann problem for porous medium equations. Conference Publications, 2009, 2009 (Special) : 1-10. doi: 10.3934/proc.2009.2009.1

[17]

Verena Bögelein, Frank Duzaar, Ugo Gianazza. Very weak solutions of singular porous medium equations with measure data. Communications on Pure & Applied Analysis, 2015, 14 (1) : 23-49. doi: 10.3934/cpaa.2015.14.23

[18]

Panagiota Daskalopoulos, Eunjai Rhee. Free-boundary regularity for generalized porous medium equations. Communications on Pure & Applied Analysis, 2003, 2 (4) : 481-494. doi: 10.3934/cpaa.2003.2.481

[19]

Matteo Bonforte, Yannick Sire, Juan Luis Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5725-5767. doi: 10.3934/dcds.2015.35.5725

[20]

Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]