July  2014, 10(3): 945-963. doi: 10.3934/jimo.2014.10.945

Quadratic optimization over one first-order cone

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China

2. 

Industrial and Systems Engineering Department, North Carolina State University, Raleigh, NC 27695-7906, United States, United States

Received  February 2013 Revised  June 2013 Published  November 2013

This paper studies the first-order cone constrained homogeneous quadratic programming problem. For efficient computation, the problem is reformulated as a linear conic programming problem. A union of second-order cones are designed to cover the first-order cone such that a sequence of linear conic programming problems can be constructed to approximate the conic reformulation. Since the cone of nonnegative quadratic forms over a union of second-order cones has a linear matrix inequalities representation, each linear conic programming problem in the sequence is polynomial-time solvable by applying semidefinite programming techniques. The convergence of the sequence is guaranteed when the union of second-order cones gets close enough to the first-order cone. In order to further improve the efficiency, an adaptive scheme is adopted. Numerical experiments are provided to illustrate the efficiency of the proposed approach.
Citation: Xiaoling Guo, Zhibin Deng, Shu-Cherng Fang, Wenxun Xing. Quadratic optimization over one first-order cone. Journal of Industrial & Management Optimization, 2014, 10 (3) : 945-963. doi: 10.3934/jimo.2014.10.945
References:
[1]

F. Alizadeh and D. Goldfarb, Second-order cone programming,, Mathematical Programming, 95 (2003), 3. doi: 10.1007/s10107-002-0339-5. Google Scholar

[2]

E. D. Andersen, C. Roos and T. Terlaky, Notes on duality in second order and $p$-order cone optimization,, Optimization, 51 (2002), 627. doi: 10.1080/0233193021000030751. Google Scholar

[3]

P. Belotti, J. C. Góez, I. Pólik, T. K. Ralphs and T. Terlaky, On families of quadratic surfaces having fixed intersections with two hyperplanes,, Discrete Applied Mathematics, 161 (2013), 2778. doi: 10.1016/j.dam.2013.05.017. Google Scholar

[4]

A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications,, MPS/SIAM Series on Optimization, (2001). doi: 10.1137/1.9780898718829. Google Scholar

[5]

E. Bishop and R. R. Phelps, The support functionals of a convex set,, in Proceedings of Symposia in Pure Mathematics, (1963), 27. Google Scholar

[6]

S. Boyd and L. Vandenberghe, Convex Optimization,, Cambridge University Press, (2004). Google Scholar

[7]

S. Burer, On the copositive representation of binary and continous nonconvex quadratic programs,, Mathematical Programming, 120 (2009), 479. doi: 10.1007/s10107-008-0223-z. Google Scholar

[8]

S. Burer and K. M. Anstreicher, Second-order-cone constraints for extended trust-region subproblems,, SIAM Journal on Optimization, 23 (2013), 432. doi: 10.1137/110826862. Google Scholar

[9]

Z. Deng, S.-C. Fang, Q. Jin and W. Xing, Detecting copositivity of a symmetric matrix by an adaptive ellipsoid-based approximation scheme,, European Journal of Operational Research, 229 (2013), 21. doi: 10.1016/j.ejor.2013.02.031. Google Scholar

[10]

G. Eichfelder and J. Povh, On reformulations of nonconvex quadratic programs over convex cones by set-semidefinite constraints,, preprint, (2010). Google Scholar

[11]

Q. Jin, Quadratically Constrained Quadratic Programming Problems and Extensions,, Ph.D thesis, (2011). Google Scholar

[12]

Q. Jin, Y. Tian, Z. Deng, S.-C. Fang and W. Xing, Exact computable representation of some second-order cone constrained quadratic programming problems,, Journal of Operations Research Society of China, 1 (2013), 107. doi: 10.1007/s40305-013-0009-8. Google Scholar

[13]

C. Lu, Q. Jin, S.-C. Fang, Z. Wang and W. Xing, An LMI based adaptive approximation scheme to cones of nonnegative quadratic functions,, working paper, (2011). Google Scholar

[14]

M. W. Margaret, Advances in cone-based preference modeling for decision making with multiple criteria,, Decision Making in Manufacturing and Services, 1 (2007), 153. Google Scholar

[15]

Y. Nesterov and A. Nemirovsky, Interior-point Polynomial Methods in Convex Programming,, SIAM, (1994). doi: 10.1137/1.9781611970791. Google Scholar

[16]

R. T. Rockafellar, Convex Analysis,, 2nd edition, (1972). Google Scholar

[17]

J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Interior point methods,, Optimization Methods and Software, 11/12 (1999), 625. doi: 10.1080/10556789908805766. Google Scholar

[18]

J. F. Sturm and S. Z. Zhang, On cones of nonnegative quadratic functions,, Mathematics of Operations Research, 28 (2003), 246. doi: 10.1287/moor.28.2.246.14485. Google Scholar

[19]

Y. Tian, S.-C. Fang, Z. Deng and W. Xing, Computable representation of the cone of nonnegative quadratic forms over a general second-order cone and its application to completely positive programming,, Journal of Industrial and Management Optimization, 9 (2013), 703. doi: 10.3934/jimo.2013.9.703. Google Scholar

[20]

S. A. Vavasis, Nonlinear Optimization: Complexity Issues,, International Series of Monographs on Computer Science, (1991). Google Scholar

[21]

Y. Ye and S. Zhang, New results on quadratic minimization,, SIAM Journal on Optimization, 14 (2003), 245. doi: 10.1137/S105262340139001X. Google Scholar

show all references

References:
[1]

F. Alizadeh and D. Goldfarb, Second-order cone programming,, Mathematical Programming, 95 (2003), 3. doi: 10.1007/s10107-002-0339-5. Google Scholar

[2]

E. D. Andersen, C. Roos and T. Terlaky, Notes on duality in second order and $p$-order cone optimization,, Optimization, 51 (2002), 627. doi: 10.1080/0233193021000030751. Google Scholar

[3]

P. Belotti, J. C. Góez, I. Pólik, T. K. Ralphs and T. Terlaky, On families of quadratic surfaces having fixed intersections with two hyperplanes,, Discrete Applied Mathematics, 161 (2013), 2778. doi: 10.1016/j.dam.2013.05.017. Google Scholar

[4]

A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications,, MPS/SIAM Series on Optimization, (2001). doi: 10.1137/1.9780898718829. Google Scholar

[5]

E. Bishop and R. R. Phelps, The support functionals of a convex set,, in Proceedings of Symposia in Pure Mathematics, (1963), 27. Google Scholar

[6]

S. Boyd and L. Vandenberghe, Convex Optimization,, Cambridge University Press, (2004). Google Scholar

[7]

S. Burer, On the copositive representation of binary and continous nonconvex quadratic programs,, Mathematical Programming, 120 (2009), 479. doi: 10.1007/s10107-008-0223-z. Google Scholar

[8]

S. Burer and K. M. Anstreicher, Second-order-cone constraints for extended trust-region subproblems,, SIAM Journal on Optimization, 23 (2013), 432. doi: 10.1137/110826862. Google Scholar

[9]

Z. Deng, S.-C. Fang, Q. Jin and W. Xing, Detecting copositivity of a symmetric matrix by an adaptive ellipsoid-based approximation scheme,, European Journal of Operational Research, 229 (2013), 21. doi: 10.1016/j.ejor.2013.02.031. Google Scholar

[10]

G. Eichfelder and J. Povh, On reformulations of nonconvex quadratic programs over convex cones by set-semidefinite constraints,, preprint, (2010). Google Scholar

[11]

Q. Jin, Quadratically Constrained Quadratic Programming Problems and Extensions,, Ph.D thesis, (2011). Google Scholar

[12]

Q. Jin, Y. Tian, Z. Deng, S.-C. Fang and W. Xing, Exact computable representation of some second-order cone constrained quadratic programming problems,, Journal of Operations Research Society of China, 1 (2013), 107. doi: 10.1007/s40305-013-0009-8. Google Scholar

[13]

C. Lu, Q. Jin, S.-C. Fang, Z. Wang and W. Xing, An LMI based adaptive approximation scheme to cones of nonnegative quadratic functions,, working paper, (2011). Google Scholar

[14]

M. W. Margaret, Advances in cone-based preference modeling for decision making with multiple criteria,, Decision Making in Manufacturing and Services, 1 (2007), 153. Google Scholar

[15]

Y. Nesterov and A. Nemirovsky, Interior-point Polynomial Methods in Convex Programming,, SIAM, (1994). doi: 10.1137/1.9781611970791. Google Scholar

[16]

R. T. Rockafellar, Convex Analysis,, 2nd edition, (1972). Google Scholar

[17]

J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Interior point methods,, Optimization Methods and Software, 11/12 (1999), 625. doi: 10.1080/10556789908805766. Google Scholar

[18]

J. F. Sturm and S. Z. Zhang, On cones of nonnegative quadratic functions,, Mathematics of Operations Research, 28 (2003), 246. doi: 10.1287/moor.28.2.246.14485. Google Scholar

[19]

Y. Tian, S.-C. Fang, Z. Deng and W. Xing, Computable representation of the cone of nonnegative quadratic forms over a general second-order cone and its application to completely positive programming,, Journal of Industrial and Management Optimization, 9 (2013), 703. doi: 10.3934/jimo.2013.9.703. Google Scholar

[20]

S. A. Vavasis, Nonlinear Optimization: Complexity Issues,, International Series of Monographs on Computer Science, (1991). Google Scholar

[21]

Y. Ye and S. Zhang, New results on quadratic minimization,, SIAM Journal on Optimization, 14 (2003), 245. doi: 10.1137/S105262340139001X. Google Scholar

[1]

Ye Tian, Shu-Cherng Fang, Zhibin Deng, Wenxun Xing. Computable representation of the cone of nonnegative quadratic forms over a general second-order cone and its application to completely positive programming. Journal of Industrial & Management Optimization, 2013, 9 (3) : 703-721. doi: 10.3934/jimo.2013.9.703

[2]

Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171

[3]

Shiyun Wang, Yong-Jin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 965-976. doi: 10.3934/jimo.2014.10.965

[4]

Liping Tang, Xinmin Yang, Ying Gao. Higher-order symmetric duality for multiobjective programming with cone constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019033

[5]

Yanqin Bai, Chuanhao Guo. Doubly nonnegative relaxation method for solving multiple objective quadratic programming problems. Journal of Industrial & Management Optimization, 2014, 10 (2) : 543-556. doi: 10.3934/jimo.2014.10.543

[6]

Ye Tian, Qingwei Jin, Zhibin Deng. Quadratic optimization over a polyhedral cone. Journal of Industrial & Management Optimization, 2016, 12 (1) : 269-283. doi: 10.3934/jimo.2016.12.269

[7]

Cheng Lu, Zhenbo Wang, Wenxun Xing, Shu-Cherng Fang. Extended canonical duality and conic programming for solving 0-1 quadratic programming problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 779-793. doi: 10.3934/jimo.2010.6.779

[8]

Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111

[9]

Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets. Journal of Industrial & Management Optimization, 2009, 5 (4) : 851-866. doi: 10.3934/jimo.2009.5.851

[10]

Ye Tian, Cheng Lu. Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1027-1039. doi: 10.3934/jimo.2011.7.1027

[11]

Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129

[12]

Ziye Shi, Qingwei Jin. Second order optimality conditions and reformulations for nonconvex quadratically constrained quadratic programming problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 871-882. doi: 10.3934/jimo.2014.10.871

[13]

Yanqin Bai, Pengfei Ma, Jing Zhang. A polynomial-time interior-point method for circular cone programming based on kernel functions. Journal of Industrial & Management Optimization, 2016, 12 (2) : 739-756. doi: 10.3934/jimo.2016.12.739

[14]

Yanqin Bai, Xuerui Gao, Guoqiang Wang. Primal-dual interior-point algorithms for convex quadratic circular cone optimization. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 211-231. doi: 10.3934/naco.2015.5.211

[15]

Yanqin Bai, Lipu Zhang. A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization. Journal of Industrial & Management Optimization, 2011, 7 (4) : 891-906. doi: 10.3934/jimo.2011.7.891

[16]

Shu-Cherng Fang, David Y. Gao, Ruey-Lin Sheu, Soon-Yi Wu. Canonical dual approach to solving 0-1 quadratic programming problems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 125-142. doi: 10.3934/jimo.2008.4.125

[17]

Zhenbo Wang, Shu-Cherng Fang, David Y. Gao, Wenxun Xing. Global extremal conditions for multi-integer quadratic programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 213-225. doi: 10.3934/jimo.2008.4.213

[18]

Andrew E.B. Lim, John B. Moore. A path following algorithm for infinite quadratic programming on a Hilbert space. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 653-670. doi: 10.3934/dcds.1998.4.653

[19]

Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial & Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177

[20]

Ailing Zhang, Shunsuke Hayashi. Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 83-98. doi: 10.3934/naco.2011.1.83

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (2)

[Back to Top]