July  2014, 34(7): 2983-3011. doi: 10.3934/dcds.2014.34.2983

The Aubry-Mather theorem for driven generalized elastic chains

1. 

Department of Mathematics, Bijenička 30, Zagreb

Received  May 2013 Revised  October 2013 Published  December 2013

We consider uniformly (DC) or periodically (AC) driven generalized infinite elastic chains (a generalized Frenkel-Kontorova model) with gradient dynamics. We first show that the union of supports of all space-time invariant measures, denoted by $\mathcal{A}$, projects injectively to a dynamical system on a 2-dimensional cylinder. We also prove existence of space-time ergodic measures supported on a set of rotationaly ordered configurations with an arbitrary (rational or irrational) rotation number. This shows that the Aubry-Mather structure of ground states persists if an arbitrary AC or DC force is applied. The set $\mathcal{A}$ attracts almost surely (in probability) configurations with bounded spacing. In the DC case, $\mathcal{A}$ consists entirely of equilibria and uniformly sliding solutions. The key tool is a new weak Lyapunov function on the space of translationally invariant probability measures on the state space, which counts intersections.
Citation: Siniša Slijepčević. The Aubry-Mather theorem for driven generalized elastic chains. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2983-3011. doi: 10.3934/dcds.2014.34.2983
References:
[1]

S. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations,, Trans. Am. Math. Soc., 307 (1988), 545.  doi: 10.1090/S0002-9947-1988-0940217-X.  Google Scholar

[2]

S. Angenent, The zeroset of a solution of a parabolic equation,, J. Reine Engew. Math., 390 (1988), 79.  doi: 10.1515/crll.1988.390.79.  Google Scholar

[3]

C. Baesens and R. S. Mackay, Gradient dynamics of tilted Frenkel-Kontorova models,, Nonlinearity, 11 (1998), 949.  doi: 10.1088/0951-7715/11/4/011.  Google Scholar

[4]

C. Baesens, Spatially extended systems with monotone dynamics (continuous time),, in Dynamics of coupled Map Lattices and of Related Spatially Extended Systems, (2005), 241.  doi: 10.1007/11360810_10.  Google Scholar

[5]

V. Bangert, Mather sets for twist geodesics on tori,, in Dynamics Reported, (1988), 1.   Google Scholar

[6]

J.-P. Eckmann and J. Rougemont, Coarsening by Ginzburg-Landau dynamics,, Comm. Math. Phys., 199 (1998), 441.  doi: 10.1007/s002200050508.  Google Scholar

[7]

B. Fiedler and J. Mallet-Paret, A Poincaré-Bendixson theorem for scalar reaction diffusion equations,, Arch. Rational Mech. Anal., 107 (1989), 325.  doi: 10.1007/BF00251553.  Google Scholar

[8]

J. J. Mazo, F. Falo and L. M. Floría, Stability of metastable structures in dissipative ac dynamics of the Frenkel-Kontorova model,, Phys. Rev. B, 52 (1995), 6451.  doi: 10.1103/PhysRevB.52.6451.  Google Scholar

[9]

L. M. Floría and J. J. Mazo, Dissipative dynamics of the Frenkel-Kontorova model,, Advances in Physics, 45 (1996), 505.  doi: 10.1080/00018739600101557.  Google Scholar

[10]

L. M. Floría, C. Baesens and J. Gómez-Gardeñez, The Frenkel-Kontorova model,, in Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, (2005), 209.  doi: 10.1007/11360810_9.  Google Scholar

[11]

T. Gallay and A. Scheel, Diffusive stability of oscillations in reaction-diffusion systems,, Trans. Am. Math. Soc., 363 (2011), 2571.  doi: 10.1090/S0002-9947-2010-05148-7.  Google Scholar

[12]

T. Gallay and S. Slijepčević, Energy flow in formally gradient partial differential equations on unbounded domains,, J. Dynam. Differential Equations, 13 (2001), 757.  doi: 10.1023/A:1016624010828.  Google Scholar

[13]

T. Gallay and S. Slijepčević, Distribution of energy and convergence to equilibria in extended dissipative systems,, preprint, ().   Google Scholar

[14]

R. W. Ghrist and R. C. Vandervost, Scalar parabolic PDEs and braids,, Trans. Am. Math. Soc., 361 (2009), 2755.  doi: 10.1090/S0002-9947-08-04823-X.  Google Scholar

[15]

B. Hu, W.-X. Qin and Z. Zheng, Rotation number of the overdamped Frenkel-Kontorova model with ac-driving,, Physica D, 208 (2005), 172.  doi: 10.1016/j.physd.2005.06.022.  Google Scholar

[16]

R. Joly and G. Raugel, Generic Morse-Smale property for the parabolic equation on the circle,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1397.  doi: 10.1016/j.anihpc.2010.09.001.  Google Scholar

[17]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).   Google Scholar

[18]

S. G. Krantz and R. Parks, A Primer of Real Analytic Functions,, Second edition, (2002).  doi: 10.1007/978-0-8176-8134-0.  Google Scholar

[19]

R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309.  doi: 10.1016/j.anihpc.2008.11.002.  Google Scholar

[20]

J. Mather, Minimal measures,, Comm. Math. Helv., 64 (1989), 375.  doi: 10.1007/BF02564683.  Google Scholar

[21]

A. Mielke and S. Zelik, Multi-pulse evolution and space-time chaos in dissipative systems,, Mem. Am. Math. Soc., 198 (2009).  doi: 10.1090/memo/0925.  Google Scholar

[22]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, (2008), 103.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[23]

W.-X. Qin, Dynamics of the Frenkel-Kontorova model with irrational mean spacing,, Nolinearity, 23 (2010), 1873.  doi: 10.1088/0951-7715/23/8/005.  Google Scholar

[24]

W.-X. Qin, Existence and modulation of uniform sliding states in driven and overdamped particle chains,, Comm. Math. Physics, 311 (2012), 513.  doi: 10.1007/s00220-011-1385-8.  Google Scholar

[25]

S. Slijepčević, Extended gradient systems: Dimension one,, Discrete Contin. Dyn. Syst., 6 (2000), 503.  doi: 10.3934/dcds.2000.6.503.  Google Scholar

[26]

S. Slijepčević, The shear-rotation interval of twist maps,, Ergodic Theory Dyn. Sys., 22 (2002), 303.  doi: 10.1017/S0143385702000147.  Google Scholar

[27]

S. Slijepčević, The energy flow of discrete extended gradient systems,, Nonlinearity, 26 (2013), 2051.  doi: 10.1088/0951-7715/26/7/2051.  Google Scholar

[28]

S. Slijepčević, An ergodic Poincaré-Bendixson theorem for scalar reaction diffusion equations,, in preparation., ().   Google Scholar

[29]

J. Smillie, Competitive and cooperative tridiagonal systems of differential equations,, SIAM J. Math. Anal., 15 (1984), 530.  doi: 10.1137/0515040.  Google Scholar

[30]

H. L. Smith, Monotone dynamical systems,, Mathematical Surveys and Monographs, (1996).   Google Scholar

[31]

D. Turaev and S. Zelik, Analytical proof of space-time chaos in Ginzburg-Landau equation,, Discrete Contin. Dyn. Sys., 28 (2010), 1713.  doi: 10.3934/dcds.2010.28.1713.  Google Scholar

[32]

S. Zelik, Formally gradient reaction-diffusion systems in $\mathbbR^n$ have zero spatio-temporal entropy,, Discrete Contin. Dyn. Sys., 2003 (): 960.   Google Scholar

show all references

References:
[1]

S. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations,, Trans. Am. Math. Soc., 307 (1988), 545.  doi: 10.1090/S0002-9947-1988-0940217-X.  Google Scholar

[2]

S. Angenent, The zeroset of a solution of a parabolic equation,, J. Reine Engew. Math., 390 (1988), 79.  doi: 10.1515/crll.1988.390.79.  Google Scholar

[3]

C. Baesens and R. S. Mackay, Gradient dynamics of tilted Frenkel-Kontorova models,, Nonlinearity, 11 (1998), 949.  doi: 10.1088/0951-7715/11/4/011.  Google Scholar

[4]

C. Baesens, Spatially extended systems with monotone dynamics (continuous time),, in Dynamics of coupled Map Lattices and of Related Spatially Extended Systems, (2005), 241.  doi: 10.1007/11360810_10.  Google Scholar

[5]

V. Bangert, Mather sets for twist geodesics on tori,, in Dynamics Reported, (1988), 1.   Google Scholar

[6]

J.-P. Eckmann and J. Rougemont, Coarsening by Ginzburg-Landau dynamics,, Comm. Math. Phys., 199 (1998), 441.  doi: 10.1007/s002200050508.  Google Scholar

[7]

B. Fiedler and J. Mallet-Paret, A Poincaré-Bendixson theorem for scalar reaction diffusion equations,, Arch. Rational Mech. Anal., 107 (1989), 325.  doi: 10.1007/BF00251553.  Google Scholar

[8]

J. J. Mazo, F. Falo and L. M. Floría, Stability of metastable structures in dissipative ac dynamics of the Frenkel-Kontorova model,, Phys. Rev. B, 52 (1995), 6451.  doi: 10.1103/PhysRevB.52.6451.  Google Scholar

[9]

L. M. Floría and J. J. Mazo, Dissipative dynamics of the Frenkel-Kontorova model,, Advances in Physics, 45 (1996), 505.  doi: 10.1080/00018739600101557.  Google Scholar

[10]

L. M. Floría, C. Baesens and J. Gómez-Gardeñez, The Frenkel-Kontorova model,, in Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, (2005), 209.  doi: 10.1007/11360810_9.  Google Scholar

[11]

T. Gallay and A. Scheel, Diffusive stability of oscillations in reaction-diffusion systems,, Trans. Am. Math. Soc., 363 (2011), 2571.  doi: 10.1090/S0002-9947-2010-05148-7.  Google Scholar

[12]

T. Gallay and S. Slijepčević, Energy flow in formally gradient partial differential equations on unbounded domains,, J. Dynam. Differential Equations, 13 (2001), 757.  doi: 10.1023/A:1016624010828.  Google Scholar

[13]

T. Gallay and S. Slijepčević, Distribution of energy and convergence to equilibria in extended dissipative systems,, preprint, ().   Google Scholar

[14]

R. W. Ghrist and R. C. Vandervost, Scalar parabolic PDEs and braids,, Trans. Am. Math. Soc., 361 (2009), 2755.  doi: 10.1090/S0002-9947-08-04823-X.  Google Scholar

[15]

B. Hu, W.-X. Qin and Z. Zheng, Rotation number of the overdamped Frenkel-Kontorova model with ac-driving,, Physica D, 208 (2005), 172.  doi: 10.1016/j.physd.2005.06.022.  Google Scholar

[16]

R. Joly and G. Raugel, Generic Morse-Smale property for the parabolic equation on the circle,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1397.  doi: 10.1016/j.anihpc.2010.09.001.  Google Scholar

[17]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).   Google Scholar

[18]

S. G. Krantz and R. Parks, A Primer of Real Analytic Functions,, Second edition, (2002).  doi: 10.1007/978-0-8176-8134-0.  Google Scholar

[19]

R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309.  doi: 10.1016/j.anihpc.2008.11.002.  Google Scholar

[20]

J. Mather, Minimal measures,, Comm. Math. Helv., 64 (1989), 375.  doi: 10.1007/BF02564683.  Google Scholar

[21]

A. Mielke and S. Zelik, Multi-pulse evolution and space-time chaos in dissipative systems,, Mem. Am. Math. Soc., 198 (2009).  doi: 10.1090/memo/0925.  Google Scholar

[22]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, (2008), 103.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[23]

W.-X. Qin, Dynamics of the Frenkel-Kontorova model with irrational mean spacing,, Nolinearity, 23 (2010), 1873.  doi: 10.1088/0951-7715/23/8/005.  Google Scholar

[24]

W.-X. Qin, Existence and modulation of uniform sliding states in driven and overdamped particle chains,, Comm. Math. Physics, 311 (2012), 513.  doi: 10.1007/s00220-011-1385-8.  Google Scholar

[25]

S. Slijepčević, Extended gradient systems: Dimension one,, Discrete Contin. Dyn. Syst., 6 (2000), 503.  doi: 10.3934/dcds.2000.6.503.  Google Scholar

[26]

S. Slijepčević, The shear-rotation interval of twist maps,, Ergodic Theory Dyn. Sys., 22 (2002), 303.  doi: 10.1017/S0143385702000147.  Google Scholar

[27]

S. Slijepčević, The energy flow of discrete extended gradient systems,, Nonlinearity, 26 (2013), 2051.  doi: 10.1088/0951-7715/26/7/2051.  Google Scholar

[28]

S. Slijepčević, An ergodic Poincaré-Bendixson theorem for scalar reaction diffusion equations,, in preparation., ().   Google Scholar

[29]

J. Smillie, Competitive and cooperative tridiagonal systems of differential equations,, SIAM J. Math. Anal., 15 (1984), 530.  doi: 10.1137/0515040.  Google Scholar

[30]

H. L. Smith, Monotone dynamical systems,, Mathematical Surveys and Monographs, (1996).   Google Scholar

[31]

D. Turaev and S. Zelik, Analytical proof of space-time chaos in Ginzburg-Landau equation,, Discrete Contin. Dyn. Sys., 28 (2010), 1713.  doi: 10.3934/dcds.2010.28.1713.  Google Scholar

[32]

S. Zelik, Formally gradient reaction-diffusion systems in $\mathbbR^n$ have zero spatio-temporal entropy,, Discrete Contin. Dyn. Sys., 2003 (): 960.   Google Scholar

[1]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[2]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[3]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[4]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[5]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[6]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[7]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[8]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[9]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[10]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[11]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[12]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[13]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[14]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[15]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[16]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[17]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[18]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[19]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[20]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]