-
Previous Article
On the higher-order b-family equation and Euler equations on the circle
- DCDS Home
- This Issue
-
Next Article
Hyperbolicity and types of shadowing for $C^1$ generic vector fields
The Aubry-Mather theorem for driven generalized elastic chains
1. | Department of Mathematics, Bijenička 30, Zagreb |
References:
[1] |
S. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations,, Trans. Am. Math. Soc., 307 (1988), 545.
doi: 10.1090/S0002-9947-1988-0940217-X. |
[2] |
S. Angenent, The zeroset of a solution of a parabolic equation,, J. Reine Engew. Math., 390 (1988), 79.
doi: 10.1515/crll.1988.390.79. |
[3] |
C. Baesens and R. S. Mackay, Gradient dynamics of tilted Frenkel-Kontorova models,, Nonlinearity, 11 (1998), 949.
doi: 10.1088/0951-7715/11/4/011. |
[4] |
C. Baesens, Spatially extended systems with monotone dynamics (continuous time),, in Dynamics of coupled Map Lattices and of Related Spatially Extended Systems, (2005), 241.
doi: 10.1007/11360810_10. |
[5] |
V. Bangert, Mather sets for twist geodesics on tori,, in Dynamics Reported, (1988), 1.
|
[6] |
J.-P. Eckmann and J. Rougemont, Coarsening by Ginzburg-Landau dynamics,, Comm. Math. Phys., 199 (1998), 441.
doi: 10.1007/s002200050508. |
[7] |
B. Fiedler and J. Mallet-Paret, A Poincaré-Bendixson theorem for scalar reaction diffusion equations,, Arch. Rational Mech. Anal., 107 (1989), 325.
doi: 10.1007/BF00251553. |
[8] |
J. J. Mazo, F. Falo and L. M. Floría, Stability of metastable structures in dissipative ac dynamics of the Frenkel-Kontorova model,, Phys. Rev. B, 52 (1995), 6451.
doi: 10.1103/PhysRevB.52.6451. |
[9] |
L. M. Floría and J. J. Mazo, Dissipative dynamics of the Frenkel-Kontorova model,, Advances in Physics, 45 (1996), 505.
doi: 10.1080/00018739600101557. |
[10] |
L. M. Floría, C. Baesens and J. Gómez-Gardeñez, The Frenkel-Kontorova model,, in Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, (2005), 209.
doi: 10.1007/11360810_9. |
[11] |
T. Gallay and A. Scheel, Diffusive stability of oscillations in reaction-diffusion systems,, Trans. Am. Math. Soc., 363 (2011), 2571.
doi: 10.1090/S0002-9947-2010-05148-7. |
[12] |
T. Gallay and S. Slijepčević, Energy flow in formally gradient partial differential equations on unbounded domains,, J. Dynam. Differential Equations, 13 (2001), 757.
doi: 10.1023/A:1016624010828. |
[13] |
T. Gallay and S. Slijepčević, Distribution of energy and convergence to equilibria in extended dissipative systems,, preprint, (). Google Scholar |
[14] |
R. W. Ghrist and R. C. Vandervost, Scalar parabolic PDEs and braids,, Trans. Am. Math. Soc., 361 (2009), 2755.
doi: 10.1090/S0002-9947-08-04823-X. |
[15] |
B. Hu, W.-X. Qin and Z. Zheng, Rotation number of the overdamped Frenkel-Kontorova model with ac-driving,, Physica D, 208 (2005), 172.
doi: 10.1016/j.physd.2005.06.022. |
[16] |
R. Joly and G. Raugel, Generic Morse-Smale property for the parabolic equation on the circle,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1397.
doi: 10.1016/j.anihpc.2010.09.001. |
[17] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).
|
[18] |
S. G. Krantz and R. Parks, A Primer of Real Analytic Functions,, Second edition, (2002).
doi: 10.1007/978-0-8176-8134-0. |
[19] |
R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309.
doi: 10.1016/j.anihpc.2008.11.002. |
[20] |
J. Mather, Minimal measures,, Comm. Math. Helv., 64 (1989), 375.
doi: 10.1007/BF02564683. |
[21] |
A. Mielke and S. Zelik, Multi-pulse evolution and space-time chaos in dissipative systems,, Mem. Am. Math. Soc., 198 (2009).
doi: 10.1090/memo/0925. |
[22] |
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, (2008), 103.
doi: 10.1016/S1874-5717(08)00003-0. |
[23] |
W.-X. Qin, Dynamics of the Frenkel-Kontorova model with irrational mean spacing,, Nolinearity, 23 (2010), 1873.
doi: 10.1088/0951-7715/23/8/005. |
[24] |
W.-X. Qin, Existence and modulation of uniform sliding states in driven and overdamped particle chains,, Comm. Math. Physics, 311 (2012), 513.
doi: 10.1007/s00220-011-1385-8. |
[25] |
S. Slijepčević, Extended gradient systems: Dimension one,, Discrete Contin. Dyn. Syst., 6 (2000), 503.
doi: 10.3934/dcds.2000.6.503. |
[26] |
S. Slijepčević, The shear-rotation interval of twist maps,, Ergodic Theory Dyn. Sys., 22 (2002), 303.
doi: 10.1017/S0143385702000147. |
[27] |
S. Slijepčević, The energy flow of discrete extended gradient systems,, Nonlinearity, 26 (2013), 2051.
doi: 10.1088/0951-7715/26/7/2051. |
[28] |
S. Slijepčević, An ergodic Poincaré-Bendixson theorem for scalar reaction diffusion equations,, in preparation., (). Google Scholar |
[29] |
J. Smillie, Competitive and cooperative tridiagonal systems of differential equations,, SIAM J. Math. Anal., 15 (1984), 530.
doi: 10.1137/0515040. |
[30] |
H. L. Smith, Monotone dynamical systems,, Mathematical Surveys and Monographs, (1996). Google Scholar |
[31] |
D. Turaev and S. Zelik, Analytical proof of space-time chaos in Ginzburg-Landau equation,, Discrete Contin. Dyn. Sys., 28 (2010), 1713.
doi: 10.3934/dcds.2010.28.1713. |
[32] |
S. Zelik, Formally gradient reaction-diffusion systems in $\mathbbR^n$ have zero spatio-temporal entropy,, Discrete Contin. Dyn. Sys., 2003 (): 960.
|
show all references
References:
[1] |
S. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations,, Trans. Am. Math. Soc., 307 (1988), 545.
doi: 10.1090/S0002-9947-1988-0940217-X. |
[2] |
S. Angenent, The zeroset of a solution of a parabolic equation,, J. Reine Engew. Math., 390 (1988), 79.
doi: 10.1515/crll.1988.390.79. |
[3] |
C. Baesens and R. S. Mackay, Gradient dynamics of tilted Frenkel-Kontorova models,, Nonlinearity, 11 (1998), 949.
doi: 10.1088/0951-7715/11/4/011. |
[4] |
C. Baesens, Spatially extended systems with monotone dynamics (continuous time),, in Dynamics of coupled Map Lattices and of Related Spatially Extended Systems, (2005), 241.
doi: 10.1007/11360810_10. |
[5] |
V. Bangert, Mather sets for twist geodesics on tori,, in Dynamics Reported, (1988), 1.
|
[6] |
J.-P. Eckmann and J. Rougemont, Coarsening by Ginzburg-Landau dynamics,, Comm. Math. Phys., 199 (1998), 441.
doi: 10.1007/s002200050508. |
[7] |
B. Fiedler and J. Mallet-Paret, A Poincaré-Bendixson theorem for scalar reaction diffusion equations,, Arch. Rational Mech. Anal., 107 (1989), 325.
doi: 10.1007/BF00251553. |
[8] |
J. J. Mazo, F. Falo and L. M. Floría, Stability of metastable structures in dissipative ac dynamics of the Frenkel-Kontorova model,, Phys. Rev. B, 52 (1995), 6451.
doi: 10.1103/PhysRevB.52.6451. |
[9] |
L. M. Floría and J. J. Mazo, Dissipative dynamics of the Frenkel-Kontorova model,, Advances in Physics, 45 (1996), 505.
doi: 10.1080/00018739600101557. |
[10] |
L. M. Floría, C. Baesens and J. Gómez-Gardeñez, The Frenkel-Kontorova model,, in Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, (2005), 209.
doi: 10.1007/11360810_9. |
[11] |
T. Gallay and A. Scheel, Diffusive stability of oscillations in reaction-diffusion systems,, Trans. Am. Math. Soc., 363 (2011), 2571.
doi: 10.1090/S0002-9947-2010-05148-7. |
[12] |
T. Gallay and S. Slijepčević, Energy flow in formally gradient partial differential equations on unbounded domains,, J. Dynam. Differential Equations, 13 (2001), 757.
doi: 10.1023/A:1016624010828. |
[13] |
T. Gallay and S. Slijepčević, Distribution of energy and convergence to equilibria in extended dissipative systems,, preprint, (). Google Scholar |
[14] |
R. W. Ghrist and R. C. Vandervost, Scalar parabolic PDEs and braids,, Trans. Am. Math. Soc., 361 (2009), 2755.
doi: 10.1090/S0002-9947-08-04823-X. |
[15] |
B. Hu, W.-X. Qin and Z. Zheng, Rotation number of the overdamped Frenkel-Kontorova model with ac-driving,, Physica D, 208 (2005), 172.
doi: 10.1016/j.physd.2005.06.022. |
[16] |
R. Joly and G. Raugel, Generic Morse-Smale property for the parabolic equation on the circle,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1397.
doi: 10.1016/j.anihpc.2010.09.001. |
[17] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).
|
[18] |
S. G. Krantz and R. Parks, A Primer of Real Analytic Functions,, Second edition, (2002).
doi: 10.1007/978-0-8176-8134-0. |
[19] |
R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309.
doi: 10.1016/j.anihpc.2008.11.002. |
[20] |
J. Mather, Minimal measures,, Comm. Math. Helv., 64 (1989), 375.
doi: 10.1007/BF02564683. |
[21] |
A. Mielke and S. Zelik, Multi-pulse evolution and space-time chaos in dissipative systems,, Mem. Am. Math. Soc., 198 (2009).
doi: 10.1090/memo/0925. |
[22] |
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, (2008), 103.
doi: 10.1016/S1874-5717(08)00003-0. |
[23] |
W.-X. Qin, Dynamics of the Frenkel-Kontorova model with irrational mean spacing,, Nolinearity, 23 (2010), 1873.
doi: 10.1088/0951-7715/23/8/005. |
[24] |
W.-X. Qin, Existence and modulation of uniform sliding states in driven and overdamped particle chains,, Comm. Math. Physics, 311 (2012), 513.
doi: 10.1007/s00220-011-1385-8. |
[25] |
S. Slijepčević, Extended gradient systems: Dimension one,, Discrete Contin. Dyn. Syst., 6 (2000), 503.
doi: 10.3934/dcds.2000.6.503. |
[26] |
S. Slijepčević, The shear-rotation interval of twist maps,, Ergodic Theory Dyn. Sys., 22 (2002), 303.
doi: 10.1017/S0143385702000147. |
[27] |
S. Slijepčević, The energy flow of discrete extended gradient systems,, Nonlinearity, 26 (2013), 2051.
doi: 10.1088/0951-7715/26/7/2051. |
[28] |
S. Slijepčević, An ergodic Poincaré-Bendixson theorem for scalar reaction diffusion equations,, in preparation., (). Google Scholar |
[29] |
J. Smillie, Competitive and cooperative tridiagonal systems of differential equations,, SIAM J. Math. Anal., 15 (1984), 530.
doi: 10.1137/0515040. |
[30] |
H. L. Smith, Monotone dynamical systems,, Mathematical Surveys and Monographs, (1996). Google Scholar |
[31] |
D. Turaev and S. Zelik, Analytical proof of space-time chaos in Ginzburg-Landau equation,, Discrete Contin. Dyn. Sys., 28 (2010), 1713.
doi: 10.3934/dcds.2010.28.1713. |
[32] |
S. Zelik, Formally gradient reaction-diffusion systems in $\mathbbR^n$ have zero spatio-temporal entropy,, Discrete Contin. Dyn. Sys., 2003 (): 960.
|
[1] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[2] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[3] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[4] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[5] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[6] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[7] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[8] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[9] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[10] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[11] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[12] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[13] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[14] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[15] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[16] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[17] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[18] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[19] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[20] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]