2014, 4(1): 45-99. doi: 10.3934/mcrf.2014.4.45

Control of a Korteweg-de Vries equation: A tutorial

1. 

Departamento de Matemática, Universidad Técnica Federico Santa María, Avda. España 1680, Casilla 110-V, Valparaíso, Chile

Received  January 2012 Revised  January 2013 Published  December 2013

These notes are intended to be a tutorial material revisiting in an almost self-contained way, some control results for the Korteweg-de Vries (KdV) equation posed on a bounded interval. We address the topics of boundary controllability and internal stabilization for this nonlinear control system. Concerning controllability, homogeneous Dirichlet boundary conditions are considered and a control is put on the Neumann boundary condition at the right end-point of the interval. We show the existence of some critical domains for which the linear KdV equation is not controllable. In despite of that, we prove that in these cases the nonlinearity gives the exact controllability. Regarding stabilization, we study the problem where all the boundary conditions are homogeneous. We add an internal damping mechanism in order to force the solutions of the KdV equation to decay exponentially to the origin in $L^2$-norm.
Citation: Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control & Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45
References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024. doi: 10.1137/0330055.

[2]

L. Baudouin, E. Cerpa, E. Crépeau and A. Mercado, On the determination of the principal coefficient from boundary measurements in a KdV equation,, J. Inverse Ill-Posed Probl., (). doi: 10.1515/jip-2013-0015.

[3]

K. Beauchard, Local controllability of a 1-D Schrödinger equation,, J. Math. Pures Appl. (9), 84 (2005), 851. doi: 10.1016/j.matpur.2005.02.005.

[4]

K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well,, J. Funct. Anal., 232 (2006), 328. doi: 10.1016/j.jfa.2005.03.021.

[5]

J. Bona and R. Winther, The Korteweg-de Vries equation, posed in a quarter-plane,, SIAM J. Math. Anal., 14 (1983), 1056. doi: 10.1137/0514085.

[6]

H. Brezis, Analyse Fonctionnelle. Théorie et Applications,, Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master's Degree], (1983).

[7]

E. Cerpa, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain,, SIAM J. Control Optim., 46 (2007), 877. doi: 10.1137/06065369X.

[8]

E. Cerpa and J.-M. Coron, Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition,, IEEE Trans. Automat. Control, 58 (2013), 1688. doi: 10.1109/TAC.2013.2241479.

[9]

E. Cerpa and E. Crépeau, Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 457. doi: 10.1016/j.anihpc.2007.11.003.

[10]

E. Cerpa and E. Crépeau, Rapid exponential stabilization for a linear Korteweg-de Vries equation,, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 655. doi: 10.3934/dcdsb.2009.11.655.

[11]

E. Cerpa, I. Rivas and B.-Y. Zhang, Boundary controllability of the Korteweg-de Vries equation on a bounded domain,, SIAM J. Control Optim., 51 (2013), 2976. doi: 10.1137/120891721.

[12]

M. Chapouly, Global controllability of a nonlinear Korteweg-de Vries equation,, Comm. in Contemp. Math., 11 (2009), 495. doi: 10.1142/S0219199709003454.

[13]

J.-M. Coron, Global asymptotic stabilization for controllable systems without drift,, Math. Control Signal Systems, 5 (1992), 295. doi: 10.1007/BF01211563.

[14]

J.-M. Coron, On the controllability of 2-D incompressible perfect fluids,, J. Math. Pures Appl. (9), 75 (1996), 155.

[15]

J.-M. Coron, Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations,, ESAIM Control Optim. Calc. Var., 8 (2002), 513. doi: 10.1051/cocv:2002050.

[16]

J.-M. Coron, On the small time local controllability of a quantum particle in a moving one-dimensional infinite square potential well,, C. R. Acad. Sci. Paris, 342 (2006), 103. doi: 10.1016/j.crma.2005.11.004.

[17]

J.-M. Coron, Control and Nonlinearity,, Mathematical Surveys and Monographs, (2007).

[18]

J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with critical lengths,, J. Eur. Math. Soc., 6 (2004), 367.

[19]

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations,, SIAM J. Control Optim., 43 (2004), 549. doi: 10.1137/S036301290342471X.

[20]

E. Crépeau, Exact controllability of the Korteweg-de Vries equation around a non-trivial stationary solution,, Internat. J. Control, 74 (2001), 1096. doi: 10.1080/00207170110052202.

[21]

E. Crépeau, Contrôlabilité Exacte d'Équations Dispersives Issues de la Mécanique,, Ph.D thesis, (2002).

[22]

L. Escauriaza, C. Kenig, G. Ponce and L. Vega, On uniqueness properties of solutions of the k-generalized KdV equations,, J. Funct. Anal., 244 (2007), 504. doi: 10.1016/j.jfa.2006.11.004.

[23]

A. V. Faminskii, Global well-posedness of two initial-boundary-value problems for the Korteweg-de Vries equation,, Differential Integral Equations, 20 (2007), 601.

[24]

O. Glass and S. Guerrero, Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit,, Asymptot. Anal., 60 (2008), 61.

[25]

O. Glass and S. Guerrero, Controllability of the Korteweg-de Vries equation from the right Dirichlet boundary condition,, Systems Control Lett., 59 (2010), 390. doi: 10.1016/j.sysconle.2010.05.001.

[26]

C. Kenig, G. Ponce and L. Vega, On the unique continuation of solutions to the generalized KdV equation,, Math. Res. Lett., 10 (2003), 833. doi: 10.4310/MRL.2003.v10.n6.a10.

[27]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,, Philos. Mag., 39 (1895), 422. doi: 10.1080/14786449508620739.

[28]

M. Krstic and A. Smyshlyaev, Boundary Control of PDEs. A Course on Backstepping Designs,, Advances in Design and Control, (2008).

[29]

F. Linares and A. F. Pazoto, On the exponential decay of the critical generalized Korteweg-de Vries with localized damping,, Proc. Amer. Math. Soc., 135 (2007), 1515. doi: 10.1090/S0002-9939-07-08810-7.

[30]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations,, Universitext, (2009).

[31]

J.-L. Lions, Contrôlabilité Exacte, Perurbations et Stabilization de Systèmes Distribués. Tome 2. Perturbations,, Recherches en Mathématiques Appliquées, (1988).

[32]

C. P. Massarolo, G. P. Menzala and A. F. Pazoto, On the uniform decay for the Korteweg-de Vries equation with weak damping,, Math. Methods Appl. Sci., 30 (2007), 1419. doi: 10.1002/mma.847.

[33]

A. F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping,, ESAIM Control Optim. Calc. Var., 11 (2005), 473. doi: 10.1051/cocv:2005015.

[34]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, 44 (1983). doi: 10.1007/978-1-4612-5561-1.

[35]

G. Perla Menzala, C. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping,, Quart. Appl. Math., 60 (2002), 111.

[36]

L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain,, ESAIM Control Optim. Calc. Var., 2 (1997), 33. doi: 10.1051/cocv:1997102.

[37]

L. Rosier, Control of the surface of a fluid by a wavemaker,, ESAIM Control Optim. Calc. Var., 10 (2004), 346. doi: 10.1051/cocv:2004012.

[38]

L. Rosier and B.-Y Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain,, SIAM J. Control Optim., 45 (2006), 927. doi: 10.1137/050631409.

[39]

L. Rosier and B.-Y Zhang, Control and stabilization of the Korteweg-de Vries equation: Recent progresses,, J. Syst. Sci. Complex., 22 (2009), 647. doi: 10.1007/s11424-009-9194-2.

[40]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Rev., 20 (1978), 639. doi: 10.1137/1020095.

[41]

D. L. Russell and B.-Y Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain,, SIAM J. Control Optim., 31 (1993), 659. doi: 10.1137/0331030.

[42]

D. L. Russell and B.-Y Zhang, Smoothing and decay properties of the Korteweg-de Vries equation on a periodic domain with point dissipation,, J. Math. Anal. Appl., 190 (1995), 449. doi: 10.1006/jmaa.1995.1087.

[43]

J.-C. Saut and B. Scheurer, Unique continuation for some evolution equation,, J. Differential Equations, 66 (1987), 118. doi: 10.1016/0022-0396(87)90043-X.

[44]

J. Simon, Compact sets in the space $L^p(0,T,B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65. doi: 10.1007/BF01762360.

[45]

S. M. Sun, The Korteweg-de Vries equation on a periodic domain with singular-point dissipation,, SIAM J. Control Optim., 34 (1996), 892. doi: 10.1137/S0363012994269491.

[46]

T. Tao, Nonlinear dispersive equations. Local and global analysis,, CBMS Regional Conference Series in Mathematics, (2006).

[47]

J. M. Urquiza, Rapid exponential feedback stabilization with unbounded control operators,, SIAM J. Control Optim., 43 (2005), 2233. doi: 10.1137/S0363012901388452.

[48]

G. B. Whitham, Linear and Nonlinear Waves,, Pure and Applied Mathematics, (1974).

[49]

B.-Y. Zhang, Unique continuation for the Korteweg-de Vries equation,, SIAM J. Math. Anal., 23 (1992), 55. doi: 10.1137/0523004.

[50]

B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation,, SIAM J. Control Optim., 37 (1999), 543. doi: 10.1137/S0363012997327501.

show all references

References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024. doi: 10.1137/0330055.

[2]

L. Baudouin, E. Cerpa, E. Crépeau and A. Mercado, On the determination of the principal coefficient from boundary measurements in a KdV equation,, J. Inverse Ill-Posed Probl., (). doi: 10.1515/jip-2013-0015.

[3]

K. Beauchard, Local controllability of a 1-D Schrödinger equation,, J. Math. Pures Appl. (9), 84 (2005), 851. doi: 10.1016/j.matpur.2005.02.005.

[4]

K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well,, J. Funct. Anal., 232 (2006), 328. doi: 10.1016/j.jfa.2005.03.021.

[5]

J. Bona and R. Winther, The Korteweg-de Vries equation, posed in a quarter-plane,, SIAM J. Math. Anal., 14 (1983), 1056. doi: 10.1137/0514085.

[6]

H. Brezis, Analyse Fonctionnelle. Théorie et Applications,, Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master's Degree], (1983).

[7]

E. Cerpa, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain,, SIAM J. Control Optim., 46 (2007), 877. doi: 10.1137/06065369X.

[8]

E. Cerpa and J.-M. Coron, Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition,, IEEE Trans. Automat. Control, 58 (2013), 1688. doi: 10.1109/TAC.2013.2241479.

[9]

E. Cerpa and E. Crépeau, Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 457. doi: 10.1016/j.anihpc.2007.11.003.

[10]

E. Cerpa and E. Crépeau, Rapid exponential stabilization for a linear Korteweg-de Vries equation,, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 655. doi: 10.3934/dcdsb.2009.11.655.

[11]

E. Cerpa, I. Rivas and B.-Y. Zhang, Boundary controllability of the Korteweg-de Vries equation on a bounded domain,, SIAM J. Control Optim., 51 (2013), 2976. doi: 10.1137/120891721.

[12]

M. Chapouly, Global controllability of a nonlinear Korteweg-de Vries equation,, Comm. in Contemp. Math., 11 (2009), 495. doi: 10.1142/S0219199709003454.

[13]

J.-M. Coron, Global asymptotic stabilization for controllable systems without drift,, Math. Control Signal Systems, 5 (1992), 295. doi: 10.1007/BF01211563.

[14]

J.-M. Coron, On the controllability of 2-D incompressible perfect fluids,, J. Math. Pures Appl. (9), 75 (1996), 155.

[15]

J.-M. Coron, Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations,, ESAIM Control Optim. Calc. Var., 8 (2002), 513. doi: 10.1051/cocv:2002050.

[16]

J.-M. Coron, On the small time local controllability of a quantum particle in a moving one-dimensional infinite square potential well,, C. R. Acad. Sci. Paris, 342 (2006), 103. doi: 10.1016/j.crma.2005.11.004.

[17]

J.-M. Coron, Control and Nonlinearity,, Mathematical Surveys and Monographs, (2007).

[18]

J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with critical lengths,, J. Eur. Math. Soc., 6 (2004), 367.

[19]

J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations,, SIAM J. Control Optim., 43 (2004), 549. doi: 10.1137/S036301290342471X.

[20]

E. Crépeau, Exact controllability of the Korteweg-de Vries equation around a non-trivial stationary solution,, Internat. J. Control, 74 (2001), 1096. doi: 10.1080/00207170110052202.

[21]

E. Crépeau, Contrôlabilité Exacte d'Équations Dispersives Issues de la Mécanique,, Ph.D thesis, (2002).

[22]

L. Escauriaza, C. Kenig, G. Ponce and L. Vega, On uniqueness properties of solutions of the k-generalized KdV equations,, J. Funct. Anal., 244 (2007), 504. doi: 10.1016/j.jfa.2006.11.004.

[23]

A. V. Faminskii, Global well-posedness of two initial-boundary-value problems for the Korteweg-de Vries equation,, Differential Integral Equations, 20 (2007), 601.

[24]

O. Glass and S. Guerrero, Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit,, Asymptot. Anal., 60 (2008), 61.

[25]

O. Glass and S. Guerrero, Controllability of the Korteweg-de Vries equation from the right Dirichlet boundary condition,, Systems Control Lett., 59 (2010), 390. doi: 10.1016/j.sysconle.2010.05.001.

[26]

C. Kenig, G. Ponce and L. Vega, On the unique continuation of solutions to the generalized KdV equation,, Math. Res. Lett., 10 (2003), 833. doi: 10.4310/MRL.2003.v10.n6.a10.

[27]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,, Philos. Mag., 39 (1895), 422. doi: 10.1080/14786449508620739.

[28]

M. Krstic and A. Smyshlyaev, Boundary Control of PDEs. A Course on Backstepping Designs,, Advances in Design and Control, (2008).

[29]

F. Linares and A. F. Pazoto, On the exponential decay of the critical generalized Korteweg-de Vries with localized damping,, Proc. Amer. Math. Soc., 135 (2007), 1515. doi: 10.1090/S0002-9939-07-08810-7.

[30]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations,, Universitext, (2009).

[31]

J.-L. Lions, Contrôlabilité Exacte, Perurbations et Stabilization de Systèmes Distribués. Tome 2. Perturbations,, Recherches en Mathématiques Appliquées, (1988).

[32]

C. P. Massarolo, G. P. Menzala and A. F. Pazoto, On the uniform decay for the Korteweg-de Vries equation with weak damping,, Math. Methods Appl. Sci., 30 (2007), 1419. doi: 10.1002/mma.847.

[33]

A. F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping,, ESAIM Control Optim. Calc. Var., 11 (2005), 473. doi: 10.1051/cocv:2005015.

[34]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, 44 (1983). doi: 10.1007/978-1-4612-5561-1.

[35]

G. Perla Menzala, C. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping,, Quart. Appl. Math., 60 (2002), 111.

[36]

L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain,, ESAIM Control Optim. Calc. Var., 2 (1997), 33. doi: 10.1051/cocv:1997102.

[37]

L. Rosier, Control of the surface of a fluid by a wavemaker,, ESAIM Control Optim. Calc. Var., 10 (2004), 346. doi: 10.1051/cocv:2004012.

[38]

L. Rosier and B.-Y Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain,, SIAM J. Control Optim., 45 (2006), 927. doi: 10.1137/050631409.

[39]

L. Rosier and B.-Y Zhang, Control and stabilization of the Korteweg-de Vries equation: Recent progresses,, J. Syst. Sci. Complex., 22 (2009), 647. doi: 10.1007/s11424-009-9194-2.

[40]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Rev., 20 (1978), 639. doi: 10.1137/1020095.

[41]

D. L. Russell and B.-Y Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain,, SIAM J. Control Optim., 31 (1993), 659. doi: 10.1137/0331030.

[42]

D. L. Russell and B.-Y Zhang, Smoothing and decay properties of the Korteweg-de Vries equation on a periodic domain with point dissipation,, J. Math. Anal. Appl., 190 (1995), 449. doi: 10.1006/jmaa.1995.1087.

[43]

J.-C. Saut and B. Scheurer, Unique continuation for some evolution equation,, J. Differential Equations, 66 (1987), 118. doi: 10.1016/0022-0396(87)90043-X.

[44]

J. Simon, Compact sets in the space $L^p(0,T,B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65. doi: 10.1007/BF01762360.

[45]

S. M. Sun, The Korteweg-de Vries equation on a periodic domain with singular-point dissipation,, SIAM J. Control Optim., 34 (1996), 892. doi: 10.1137/S0363012994269491.

[46]

T. Tao, Nonlinear dispersive equations. Local and global analysis,, CBMS Regional Conference Series in Mathematics, (2006).

[47]

J. M. Urquiza, Rapid exponential feedback stabilization with unbounded control operators,, SIAM J. Control Optim., 43 (2005), 2233. doi: 10.1137/S0363012901388452.

[48]

G. B. Whitham, Linear and Nonlinear Waves,, Pure and Applied Mathematics, (1974).

[49]

B.-Y. Zhang, Unique continuation for the Korteweg-de Vries equation,, SIAM J. Math. Anal., 23 (1992), 55. doi: 10.1137/0523004.

[50]

B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation,, SIAM J. Control Optim., 37 (1999), 543. doi: 10.1137/S0363012997327501.

[1]

Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509

[2]

Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655

[3]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control & Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353

[4]

M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22

[5]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[6]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[7]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[8]

Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061

[9]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[10]

Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097

[11]

Anne de Bouard, Eric Gautier. Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 857-871. doi: 10.3934/dcds.2010.26.857

[12]

Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure & Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046

[13]

Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442

[14]

Brian Pigott. Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 389-418. doi: 10.3934/cpaa.2014.13.389

[15]

Olivier Goubet. Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 625-644. doi: 10.3934/dcds.2000.6.625

[16]

Terence Tao. Two remarks on the generalised Korteweg de-Vries equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 1-14. doi: 10.3934/dcds.2007.18.1

[17]

Massimiliano Gubinelli. Rough solutions for the periodic Korteweg--de~Vries equation. Communications on Pure & Applied Analysis, 2012, 11 (2) : 709-733. doi: 10.3934/cpaa.2012.11.709

[18]

Zhaosheng Feng, Yu Huang. Approximate solution of the Burgers-Korteweg-de Vries equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 429-440. doi: 10.3934/cpaa.2007.6.429

[19]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation. Networks & Heterogeneous Media, 2016, 11 (2) : 281-300. doi: 10.3934/nhm.2016.11.281

[20]

Belkacem Said-Houari. Long-time behavior of solutions of the generalized Korteweg--de Vries equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 245-252. doi: 10.3934/dcdsb.2016.21.245

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]