2014, 8(1): 21-33. doi: 10.3934/amc.2014.8.21

Special bent and near-bent functions

1. 

IMATH(IAA), Université du Sud Toulon-Var, 83957 La Garde Cedex, France

Received  December 2011 Revised  November 2013 Published  January 2014

Starting from special near-bent functions in dimension $2t-1$ we construct bent functions in dimension $2t$ having a specific derivative. We deduce new families of bent functions.
Citation: Jacques Wolfmann. Special bent and near-bent functions. Advances in Mathematics of Communications, 2014, 8 (1) : 21-33. doi: 10.3934/amc.2014.8.21
References:
[1]

A. Canteault, C. Carlet, P. Charpin and C. Fontaine, On cryptographic properties of the cosets of R(1,m),, IEEE Trans. Inform. Theory, 47 (2001), 1494. doi: 10.1109/18.923730.

[2]

A. Canteault and P. Charpin, Decomposing bent functions,, IEEE Trans. Inform. Theory, 49 (2003), 2004. doi: 10.1109/TIT.2003.814476.

[3]

J. F. Dillon, Elementary Hadamard Difference Sets,, Ph.D thesis, (1974).

[4]

J. F. Dillon, Multiplicative difference sets via additive characters,, Des. Codes Cryptogr., 17 (1999), 225. doi: 10.1023/A:1026435428030.

[5]

R. Gold, Maximal recursive squences with 3-valued recursive cross-correlation functions,, IEEE Trans. Inform. Theory, 14 (1968), 154. doi: 10.1109/TIT.1968.1054106.

[6]

X. D. Hou, Cubic bent functions,, Discrete Math., 189 (1998), 149. doi: 10.1016/S0012-365X(98)00008-9.

[7]

G. Leander and G. McGuire, Construction of bent functions from near-bent functions,, J. Combin. Theory Ser. A, 116 (2009), 960. doi: 10.1016/j.jcta.2008.12.004.

[8]

O. S. Rothaus, On bent functions,, J. Combin. Theory Ser. A, 20 (1976), 300. doi: 10.1016/0097-3165(76)90024-8.

[9]

J. Wolfmann, Bent functions and coding theory,, in Difference Sets, (1999), 393.

[10]

J. Wolfmann, Cyclic code aspects of bent functions,, in Finite Fields Theory and Applications, (2010), 363. doi: 10.1090/conm/518/10218.

show all references

References:
[1]

A. Canteault, C. Carlet, P. Charpin and C. Fontaine, On cryptographic properties of the cosets of R(1,m),, IEEE Trans. Inform. Theory, 47 (2001), 1494. doi: 10.1109/18.923730.

[2]

A. Canteault and P. Charpin, Decomposing bent functions,, IEEE Trans. Inform. Theory, 49 (2003), 2004. doi: 10.1109/TIT.2003.814476.

[3]

J. F. Dillon, Elementary Hadamard Difference Sets,, Ph.D thesis, (1974).

[4]

J. F. Dillon, Multiplicative difference sets via additive characters,, Des. Codes Cryptogr., 17 (1999), 225. doi: 10.1023/A:1026435428030.

[5]

R. Gold, Maximal recursive squences with 3-valued recursive cross-correlation functions,, IEEE Trans. Inform. Theory, 14 (1968), 154. doi: 10.1109/TIT.1968.1054106.

[6]

X. D. Hou, Cubic bent functions,, Discrete Math., 189 (1998), 149. doi: 10.1016/S0012-365X(98)00008-9.

[7]

G. Leander and G. McGuire, Construction of bent functions from near-bent functions,, J. Combin. Theory Ser. A, 116 (2009), 960. doi: 10.1016/j.jcta.2008.12.004.

[8]

O. S. Rothaus, On bent functions,, J. Combin. Theory Ser. A, 20 (1976), 300. doi: 10.1016/0097-3165(76)90024-8.

[9]

J. Wolfmann, Bent functions and coding theory,, in Difference Sets, (1999), 393.

[10]

J. Wolfmann, Cyclic code aspects of bent functions,, in Finite Fields Theory and Applications, (2010), 363. doi: 10.1090/conm/518/10218.

[1]

Claude Carlet, Fengrong Zhang, Yupu Hu. Secondary constructions of bent functions and their enforcement. Advances in Mathematics of Communications, 2012, 6 (3) : 305-314. doi: 10.3934/amc.2012.6.305

[2]

Sihem Mesnager, Fengrong Zhang, Yong Zhou. On construction of bent functions involving symmetric functions and their duals. Advances in Mathematics of Communications, 2017, 11 (2) : 347-352. doi: 10.3934/amc.2017027

[3]

Sihem Mesnager, Fengrong Zhang. On constructions of bent, semi-bent and five valued spectrum functions from old bent functions. Advances in Mathematics of Communications, 2017, 11 (2) : 339-345. doi: 10.3934/amc.2017026

[4]

Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249

[5]

Samir Hodžić, Enes Pasalic. Generalized bent functions -sufficient conditions and related constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 549-566. doi: 10.3934/amc.2017043

[6]

Ayça Çeşmelioǧlu, Wilfried Meidl, Alexander Pott. On the dual of (non)-weakly regular bent functions and self-dual bent functions. Advances in Mathematics of Communications, 2013, 7 (4) : 425-440. doi: 10.3934/amc.2013.7.425

[7]

Joan-Josep Climent, Francisco J. García, Verónica Requena. On the construction of bent functions of $n+2$ variables from bent functions of $n$ variables. Advances in Mathematics of Communications, 2008, 2 (4) : 421-431. doi: 10.3934/amc.2008.2.421

[8]

Jyrki Lahtonen, Gary McGuire, Harold N. Ward. Gold and Kasami-Welch functions, quadratic forms, and bent functions. Advances in Mathematics of Communications, 2007, 1 (2) : 243-250. doi: 10.3934/amc.2007.1.243

[9]

Kanat Abdukhalikov, Sihem Mesnager. Explicit constructions of bent functions from pseudo-planar functions. Advances in Mathematics of Communications, 2017, 11 (2) : 293-299. doi: 10.3934/amc.2017021

[10]

Natalia Tokareva. On the number of bent functions from iterative constructions: lower bounds and hypotheses. Advances in Mathematics of Communications, 2011, 5 (4) : 609-621. doi: 10.3934/amc.2011.5.609

[11]

Xiwang Cao, Hao Chen, Sihem Mesnager. Further results on semi-bent functions in polynomial form. Advances in Mathematics of Communications, 2016, 10 (4) : 725-741. doi: 10.3934/amc.2016037

[12]

Yanfeng Qi, Chunming Tang, Zhengchun Zhou, Cuiling Fan. Several infinite families of p-ary weakly regular bent functions. Advances in Mathematics of Communications, 2018, 12 (2) : 303-315. doi: 10.3934/amc.2018019

[13]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[14]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[15]

Patricia Bauman, Daniel Phillips. Analysis and stability of bent-core liquid crystal fibers. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1707-1728. doi: 10.3934/dcdsb.2012.17.1707

[16]

Tiziana Giorgi, Feras Yousef. Analysis of a model for bent-core liquid crystals columnar phases. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2001-2026. doi: 10.3934/dcdsb.2015.20.2001

[17]

Leon Ehrenpreis. Special functions. Inverse Problems & Imaging, 2010, 4 (4) : 639-647. doi: 10.3934/ipi.2010.4.639

[18]

Heping Liu, Yu Liu. Refinable functions on the Heisenberg group. Communications on Pure & Applied Analysis, 2007, 6 (3) : 775-787. doi: 10.3934/cpaa.2007.6.775

[19]

M.T. Boudjelkha. Extended Riemann Bessel functions. Conference Publications, 2005, 2005 (Special) : 121-130. doi: 10.3934/proc.2005.2005.121

[20]

Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i

2016 Impact Factor: 0.8

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]