2014, 8(1): 73-81. doi: 10.3934/amc.2014.8.73

Self-dual [62, 31, 12] and [64, 32, 12] codes with an automorphism of order 7

1. 

Faculty of Mathematics and Informatics, Konstantin Preslavski University of Shumen, Shumen, 9712, Bulgaria

Received  February 2013 Revised  June 2013 Published  January 2014

This paper studies and classifies all binary self-dual $[62, 31, 12]$ and $[64, 32, 12]$ codes having an automorphism of order 7 with 8 cycles. This classification is done by applying a method for constructing binary self-dual codes with an automorphism of odd prime order $p$. There are exactly 8 inequivalent binary self-dual $[62, 31, 12]$ codes with an automorphism of type $7-(8,6)$. As for binary $[64,32,12]$ self-dual codes with an automorphism of type $7-(8,8)$ there are 44465 doubly-even and 557 singly-even such codes. Some of the constructed singly-even codes for both lengths have weight enumerators for which the existence was not known before.
Citation: Nikolay Yankov. Self-dual [62, 31, 12] and [64, 32, 12] codes with an automorphism of order 7. Advances in Mathematics of Communications, 2014, 8 (1) : 73-81. doi: 10.3934/amc.2014.8.73
References:
[1]

I. Bouyukliev, About the code equivalence,, in Advances in Coding Theory and Cryptography, (2007). doi: 10.1142/9789812772022_0009.

[2]

S. Bouyuklieva, N. Yankov and J.-L. Kim, Classification of binary self-dual [48, 24, 10] codes with an automorphism of odd prime order,, Finite Fields Appl., 18 (2012), 1104. doi: 10.1016/j.ffa.2012.08.002.

[3]

S. Bouyuklieva, N. Yankov and R. Russeva, Classification of the binary self-dual codes having an automorphism of order 3,, Finite Fields Appl., 13 (2007), 605. doi: 10.1016/j.ffa.2006.01.001.

[4]

S. Bouyuklieva, N. Yankov and R. Russeva, On the classication of binary self-dual [44, 22, 8] codes with an automorphism of order 3 or 7,, Int. J. Inform. Coding Theory, 2 (2011), 21. doi: 10.1504/IJICOT.2011.044676.

[5]

N. Chigira, M. Harada and M. Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii,, Des. Codes Crypt., 42 (2007), 93. doi: 10.1007/s10623-006-9018-5.

[6]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes,, IEEE Trans. Inform. Theory, 36 (1990), 1319. doi: 10.1109/18.59931.

[7]

W. C. Huffman, Automorphisms of codes with application to extremal doubly-even codes of length 48,, IEEE Trans. Inform. Theory, 28 (1982), 511. doi: 10.1109/TIT.1982.1056499.

[8]

W. C. Huffman, On the classification and enumeration of self-dual codes,, Finite Fields Appl., 11 (2005), 451. doi: 10.1016/j.ffa.2005.05.012.

[9]

W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes,, Cambridge University Press, (2003).

[10]

V. I. Iorgov, Doubly even extremal codes of length 64,, Probl. Inform. Transm., 22 (1986), 277.

[11]

S. Karadeniz and B. Yildiz, Double-circulant and bordered-double-circulant constructions for self-dual codes over $R_2$,, Adv. Math. Commun., 6 (2012), 193. doi: 10.3934/amc.2012.6.193.

[12]

G. Pasquier, A binary extremal doubly even self-dual code (64,32,12) obtained from an extended Reed-Solomon code over $F_{16}$,, IEEE Trans. Inform. Theory, 27 (1981), 807. doi: 10.1109/TIT.1981.1056421.

[13]

R. Russeva and N. Yankov, On Binary self-dual codes of lengths 60, 62, 64 and 66 having an automorphism of order 9,, Des. Codes Crypt., 45 (2007), 335. doi: 10.1007/s10623-007-9127-9.

[14]

N. Yankov, On binary self-dual codes of length 62 with an automorphism of order 7,, Math. Educ. Math., 40 (2011), 223.

[15]

N. Yankov and R. Russeva, Binary self-dual codes of lengths 52 to 60 with an automorphism of order 7 or 13,, IEEE Trans. Inform. Theory, 56 (2011), 7498. doi: 10.1109/TIT.2011.2155619.

[16]

V. Yorgov, Binary self-dual codes with an automorphism of odd order (in Russian),, Probl. Inform. Transm., 4 (1983), 13.

show all references

References:
[1]

I. Bouyukliev, About the code equivalence,, in Advances in Coding Theory and Cryptography, (2007). doi: 10.1142/9789812772022_0009.

[2]

S. Bouyuklieva, N. Yankov and J.-L. Kim, Classification of binary self-dual [48, 24, 10] codes with an automorphism of odd prime order,, Finite Fields Appl., 18 (2012), 1104. doi: 10.1016/j.ffa.2012.08.002.

[3]

S. Bouyuklieva, N. Yankov and R. Russeva, Classification of the binary self-dual codes having an automorphism of order 3,, Finite Fields Appl., 13 (2007), 605. doi: 10.1016/j.ffa.2006.01.001.

[4]

S. Bouyuklieva, N. Yankov and R. Russeva, On the classication of binary self-dual [44, 22, 8] codes with an automorphism of order 3 or 7,, Int. J. Inform. Coding Theory, 2 (2011), 21. doi: 10.1504/IJICOT.2011.044676.

[5]

N. Chigira, M. Harada and M. Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii,, Des. Codes Crypt., 42 (2007), 93. doi: 10.1007/s10623-006-9018-5.

[6]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes,, IEEE Trans. Inform. Theory, 36 (1990), 1319. doi: 10.1109/18.59931.

[7]

W. C. Huffman, Automorphisms of codes with application to extremal doubly-even codes of length 48,, IEEE Trans. Inform. Theory, 28 (1982), 511. doi: 10.1109/TIT.1982.1056499.

[8]

W. C. Huffman, On the classification and enumeration of self-dual codes,, Finite Fields Appl., 11 (2005), 451. doi: 10.1016/j.ffa.2005.05.012.

[9]

W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes,, Cambridge University Press, (2003).

[10]

V. I. Iorgov, Doubly even extremal codes of length 64,, Probl. Inform. Transm., 22 (1986), 277.

[11]

S. Karadeniz and B. Yildiz, Double-circulant and bordered-double-circulant constructions for self-dual codes over $R_2$,, Adv. Math. Commun., 6 (2012), 193. doi: 10.3934/amc.2012.6.193.

[12]

G. Pasquier, A binary extremal doubly even self-dual code (64,32,12) obtained from an extended Reed-Solomon code over $F_{16}$,, IEEE Trans. Inform. Theory, 27 (1981), 807. doi: 10.1109/TIT.1981.1056421.

[13]

R. Russeva and N. Yankov, On Binary self-dual codes of lengths 60, 62, 64 and 66 having an automorphism of order 9,, Des. Codes Crypt., 45 (2007), 335. doi: 10.1007/s10623-007-9127-9.

[14]

N. Yankov, On binary self-dual codes of length 62 with an automorphism of order 7,, Math. Educ. Math., 40 (2011), 223.

[15]

N. Yankov and R. Russeva, Binary self-dual codes of lengths 52 to 60 with an automorphism of order 7 or 13,, IEEE Trans. Inform. Theory, 56 (2011), 7498. doi: 10.1109/TIT.2011.2155619.

[16]

V. Yorgov, Binary self-dual codes with an automorphism of odd order (in Russian),, Probl. Inform. Transm., 4 (1983), 13.

[1]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[2]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[3]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[4]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[5]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[6]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[7]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[8]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[9]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[10]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[11]

Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415

[12]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[13]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[14]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[15]

Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035

[16]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

[17]

Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045

[18]

Lars Eirik Danielsen. Graph-based classification of self-dual additive codes over finite fields. Advances in Mathematics of Communications, 2009, 3 (4) : 329-348. doi: 10.3934/amc.2009.3.329

[19]

Ilias S. Kotsireas, Christos Koukouvinos, Dimitris E. Simos. MDS and near-MDS self-dual codes over large prime fields. Advances in Mathematics of Communications, 2009, 3 (4) : 349-361. doi: 10.3934/amc.2009.3.349

[20]

Joaquim Borges, Steven T. Dougherty, Cristina Fernández-Córdoba. Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$. Advances in Mathematics of Communications, 2012, 6 (3) : 287-303. doi: 10.3934/amc.2012.6.287

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]