2014, 7(4): 737-760. doi: 10.3934/dcdss.2014.7.737

$L^r_{ loc}-L^\infty_{ loc}$ estimates and expansion of positivity for a class of doubly non linear singular parabolic equations

1. 

Università degli Studi di Pavia, Dipartimento di Matematica “F. Casorati”, via Ferrata 1, 27100 Pavia

2. 

Dipartimento di Matematica “F. Casorati”, Università degli Studi di Pavia, via Ferrata, 1, 27100, Pavia, Italy

3. 

Dipartimento di Matematica “U. Dini”, Università degli Studi di Firenze, viale Morgagni, 67/A, 50134, Firenze, Italy

Received  September 2013 Revised  November 2013 Published  February 2014

In this paper we show some properties regarding the local behaviour of local weak solutions to a class of doubly nonlinear singular parabolic equations.
Citation: Simona Fornaro, Maria Sosio, Vincenzo Vespri. $L^r_{ loc}-L^\infty_{ loc}$ estimates and expansion of positivity for a class of doubly non linear singular parabolic equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 737-760. doi: 10.3934/dcdss.2014.7.737
References:
[1]

M. Bonforte and G. Grillo, Super and ultracontractive bounds for doubly nonlinear evolution equations,, Rev. Mat. Iberoamericana, 22 (2006), 111.

[2]

M. Bonforte, R. G. Iagar and J. L. Vázquez, Local smoothing effects, positivity, and Harnack inequalities for the fast $p$-Laplacian equation,, Advances in Math., 224 (2010), 2151. doi: 10.1016/j.aim.2010.01.023.

[3]

M. Bonforte and J. L. Vázquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations,, Advances in Math., 223 (2010), 529. doi: 10.1016/j.aim.2009.08.021.

[4]

E. DiBenedetto, Degenerate Parabolic Equations,, Springer-Verlag, (1993). doi: 10.1007/978-1-4612-0895-2.

[5]

E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations,, Springer Monographs in Mathematics, (2012). doi: 10.1007/978-1-4614-1584-8.

[6]

S. Fornaro and M. Sosio, Intrinsic Harnack estimates for some doubly nonlinear degenerate parabolic equations,, Adv. Differential Equations, 13 (2008), 139.

[7]

S. Fornaro, M. Sosio and V. Vespri, Energy estimates and integral Harnack inequality for some doubly nonlinear singular parabolic equations,, Contemporary Mathematics, 594 (2013), 179. doi: 10.1090/conm/594/11785.

[8]

M. A. Herrero and M. Pierre, The Cauchy problem for $u_t =\Delta u^m$ when $0< m <1$,, Trans. Amer. Math. Soc., 291 (1985), 145. doi: 10.1090/S0002-9947-1985-0797051-0.

[9]

A. S. Kalashnikov, Some problems of the qualitative theory of nonlinear degenerate second order parabolic equations,, Russian Math. Surveys, 42 (1987), 169.

[10]

A. V. Ivanov, Regularity for doubly nonlinear parabolic equations,, Journal of Mathematical Sciences, 83 (1997). doi: 10.1007/BF02398459.

[11]

A. V. Ivanov, P. Z. Mkrtychan and W. Jäger, Existence and uniqueness of a regular solution of the Cauchy-Diriclhet problem for a class of doubly nonlinear parabolic equations,, Journal of Mathematical Sciences, 84 (1997).

[12]

J. L. Lions, Quelques Méthodes de Résolution de Problèmes aux Limites non Linéaires,, Dunod, (1969).

[13]

M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations,, J. Diff. Equations, 103 (1993), 146. doi: 10.1006/jdeq.1993.1045.

[14]

D. Stan and J. L. Vázquez, Asymptotic behaviour of the doubly nonlinear diffusion equation on bounded domains,, Nonlinear Analysis TMA, 77 (2013), 1. doi: 10.1016/j.na.2012.08.011.

[15]

V. Vespri, Harnack type inequalities for solutions of certain doubly nonlinear parabolic equations,, J. Math. Anal. Appl., 181 (1994), 104. doi: 10.1006/jmaa.1994.1008.

show all references

References:
[1]

M. Bonforte and G. Grillo, Super and ultracontractive bounds for doubly nonlinear evolution equations,, Rev. Mat. Iberoamericana, 22 (2006), 111.

[2]

M. Bonforte, R. G. Iagar and J. L. Vázquez, Local smoothing effects, positivity, and Harnack inequalities for the fast $p$-Laplacian equation,, Advances in Math., 224 (2010), 2151. doi: 10.1016/j.aim.2010.01.023.

[3]

M. Bonforte and J. L. Vázquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations,, Advances in Math., 223 (2010), 529. doi: 10.1016/j.aim.2009.08.021.

[4]

E. DiBenedetto, Degenerate Parabolic Equations,, Springer-Verlag, (1993). doi: 10.1007/978-1-4612-0895-2.

[5]

E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations,, Springer Monographs in Mathematics, (2012). doi: 10.1007/978-1-4614-1584-8.

[6]

S. Fornaro and M. Sosio, Intrinsic Harnack estimates for some doubly nonlinear degenerate parabolic equations,, Adv. Differential Equations, 13 (2008), 139.

[7]

S. Fornaro, M. Sosio and V. Vespri, Energy estimates and integral Harnack inequality for some doubly nonlinear singular parabolic equations,, Contemporary Mathematics, 594 (2013), 179. doi: 10.1090/conm/594/11785.

[8]

M. A. Herrero and M. Pierre, The Cauchy problem for $u_t =\Delta u^m$ when $0< m <1$,, Trans. Amer. Math. Soc., 291 (1985), 145. doi: 10.1090/S0002-9947-1985-0797051-0.

[9]

A. S. Kalashnikov, Some problems of the qualitative theory of nonlinear degenerate second order parabolic equations,, Russian Math. Surveys, 42 (1987), 169.

[10]

A. V. Ivanov, Regularity for doubly nonlinear parabolic equations,, Journal of Mathematical Sciences, 83 (1997). doi: 10.1007/BF02398459.

[11]

A. V. Ivanov, P. Z. Mkrtychan and W. Jäger, Existence and uniqueness of a regular solution of the Cauchy-Diriclhet problem for a class of doubly nonlinear parabolic equations,, Journal of Mathematical Sciences, 84 (1997).

[12]

J. L. Lions, Quelques Méthodes de Résolution de Problèmes aux Limites non Linéaires,, Dunod, (1969).

[13]

M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations,, J. Diff. Equations, 103 (1993), 146. doi: 10.1006/jdeq.1993.1045.

[14]

D. Stan and J. L. Vázquez, Asymptotic behaviour of the doubly nonlinear diffusion equation on bounded domains,, Nonlinear Analysis TMA, 77 (2013), 1. doi: 10.1016/j.na.2012.08.011.

[15]

V. Vespri, Harnack type inequalities for solutions of certain doubly nonlinear parabolic equations,, J. Math. Anal. Appl., 181 (1994), 104. doi: 10.1006/jmaa.1994.1008.

[1]

Vitali Liskevich, Igor I. Skrypnik. Pointwise estimates for solutions of singular quasi-linear parabolic equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1029-1042. doi: 10.3934/dcdss.2013.6.1029

[2]

Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481

[3]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Non-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 35-64. doi: 10.3934/dcds.2011.31.35

[4]

Kristian Bredies. Weak solutions of linear degenerate parabolic equations and an application in image processing. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1203-1229. doi: 10.3934/cpaa.2009.8.1203

[5]

Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909

[6]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[7]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Corrigendum: Nnon-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3831-3834. doi: 10.3934/dcds.2013.33.3831

[8]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[9]

Mitsuharu Ôtani, Yoshie Sugiyama. Lipschitz continuous solutions of some doubly nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 647-670. doi: 10.3934/dcds.2002.8.647

[10]

Alberto Ferrero, Filippo Gazzola, Hans-Christoph Grunau. Decay and local eventual positivity for biharmonic parabolic equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1129-1157. doi: 10.3934/dcds.2008.21.1129

[11]

Gary M. Lieberman. Schauder estimates for singular parabolic and elliptic equations of Keldysh type. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1525-1566. doi: 10.3934/dcdsb.2016010

[12]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[13]

Luisa Moschini, Guillermo Reyes, Alberto Tesei. Nonuniqueness of solutions to semilinear parabolic equations with singular coefficients. Communications on Pure & Applied Analysis, 2006, 5 (1) : 155-179. doi: 10.3934/cpaa.2006.5.155

[14]

Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605

[15]

M. Sango. Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 885-905. doi: 10.3934/dcdsb.2007.7.885

[16]

Goro Akagi. Doubly nonlinear parabolic equations involving variable exponents. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 1-16. doi: 10.3934/dcdss.2014.7.1

[17]

Jiebao Sun, Boying Wu, Jing Li, Dazhi Zhang. A class of doubly degenerate parabolic equations with periodic sources. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1199-1210. doi: 10.3934/dcdsb.2010.14.1199

[18]

Angelo Favini, Alfredo Lorenzi, Hiroki Tanabe, Atsushi Yagi. An $L^p$-approach to singular linear parabolic equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 989-1008. doi: 10.3934/dcds.2008.22.989

[19]

Alexandra Rodkina, Henri Schurz. On positivity and boundedness of solutions of nonlinear stochastic difference equations. Conference Publications, 2009, 2009 (Special) : 640-649. doi: 10.3934/proc.2009.2009.640

[20]

Verena Bögelein, Frank Duzaar, Ugo Gianazza. Very weak solutions of singular porous medium equations with measure data. Communications on Pure & Applied Analysis, 2015, 14 (1) : 23-49. doi: 10.3934/cpaa.2015.14.23

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]