• Previous Article
    Adaptive meshing approach to identification of cracks with electrical impedance tomography
  • IPI Home
  • This Issue
  • Next Article
    Solving inverse source problems by the Orthogonal Solution and Kernel Correction Algorithm (OSKCA) with applications in fluorescence tomography
February  2014, 8(1): 103-125. doi: 10.3934/ipi.2014.8.103

Ray transforms on a conformal class of curves

1. 

University of Toronto, Department of Mathematics, Toronto, ON, M5S 2E4, Canada

2. 

Columbia University, Department of Applied Physics and Applied Mathematics, New York, NY, 10025, United States

Received  May 2010 Revised  October 2011 Published  March 2014

We introduce a technique for recovering a sufficiently smooth function from its ray transforms over rotationally related curves in the unit disc of 2-dimensional Euclidean space. The method is based on a complexification of the underlying vector fields defining the initial transport and inversion formulae are then given in a unified form. The method is used to analyze the attenuated ray transform in the same setting.
Citation: Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems & Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103
References:
[1]

L. Ahlfors, Complex Analysis,, McGraw-Hill, (1978). Google Scholar

[2]

L. V. Ahlfors, Lectures on Quasiconformal Mappings,, University Lecture Series, (2006). Google Scholar

[3]

L. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics,, Ann. of Math, 72 (1960), 385. Google Scholar

[4]

E. Arbuzov, A. Bukhgeim and S. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions,, Siberian Advances in Mathematics, 8 (1998), 1. Google Scholar

[5]

K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane,, Princeton University Press, (2009). Google Scholar

[6]

G. Bal, Ray transforms in hyperbolic geometry,, J. Math. Pures Appl., 84 (2005), 1362. doi: 10.1016/j.matpur.2005.02.001. Google Scholar

[7]

G. Bal, On the attenuated Radon transform with full and partial measurements,, Inverse Problems, 20 (2004), 399. doi: 10.1088/0266-5611/20/2/006. Google Scholar

[8]

H. Begehr, Complex Analytic Methods for Partial Differential Equations,, World Scientific Publishing Co., (1994). Google Scholar

[9]

C. Berenstein and E. C. Tarabush, Integral geometry in hyperbolic spaces and electrical impedance tomography,, SIAM J. Appl. Math., 56 (1996), 755. doi: 10.1137/S0036139994277348. Google Scholar

[10]

P. Colwell, Blaschke Products: Bounded Analytical Functions,, University of Michigan Press, (1985). Google Scholar

[11]

L. Ehrenpreis, The Universality of the Radon Transform,, Oxford Mathematical Monographs, (2003). doi: 10.1093/acprof:oso/9780198509783.001.0001. Google Scholar

[12]

L. C. Evans, Partial Differential Equations,, 19 of Graduate Studies in Mathematics, (1998). Google Scholar

[13]

D. Finch, Uniqueness for the X-ray transform in the physical range,, Inverse Problems, 2 (1986), 197. doi: 10.1088/0266-5611/2/2/010. Google Scholar

[14]

M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications,, Cambridge Texts in Applied Mathematics, (2003). doi: 10.1017/CBO9780511791246. Google Scholar

[15]

J. B. Garnett, Bounded Analytic Functions,, Springer New York, (1981). Google Scholar

[16]

R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable,, 40 of Graduate Studies in Mathematics, (2006). Google Scholar

[17]

D. Griffiths, Introduction to Elementary Particles,, Wiley-VCH, (2008). doi: 10.1002/9783527618460. Google Scholar

[18]

S. Helgason, The Radon Transform,, 5 of Progress in Mathematics, (1980). Google Scholar

[19]

______, Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators and Spherical Functions),, American Mathematical Society, (2000). Google Scholar

[20]

______, The inversion of the x-ray transform on a compact symmetric space,, Journal of Lie Theory, 17 (2007), 307. Google Scholar

[21]

L. Hormander, Complex Analysis in Several Variables,, North Holland, (1990). Google Scholar

[22]

S. S. Romesh Kumar, Inner functions and substitution operators,, Acta Sci. Math. (Szegal), 58 (1993), 509. Google Scholar

[23]

J. M. Lee, Riemannian Manifolds: An Introduction to Curvature,, 176 in Graduate Texts in Mathematics, (1997). Google Scholar

[24]

F. Natterer, Inversion of the attenuated radon transform,, Inverse Problems, 17 (2001), 113. doi: 10.1088/0266-5611/17/1/309. Google Scholar

[25]

F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction,, (Monographs on Mathematical Modeling and Computation), (2007). doi: 10.1118/1.1455744. Google Scholar

[26]

Z. Nehari, Conformal Mappings,, McGraw-Hill Book Company, (1952). Google Scholar

[27]

R. Novikov, An inversion formula for the attenuated x-ray transformation,, Ark. Math, 40 (2002), 145. doi: 10.1007/BF02384507. Google Scholar

[28]

L. Pestov and G. Uhlmann, On characterization of range and inversion formulas for the geodesic x-ray transform,, International Math. Research Notices, 80 (2004), 4331. doi: 10.1155/S1073792804142116. Google Scholar

[29]

H. Renelt, Elliptic Systems and Quasiconformal Mappings,, John Wiley & Sons Inc, (1988). Google Scholar

[30]

V. Rubakov and S. S. Wilson, Classical Theory of Gauge Fields,, Princeton University Press, (2002). Google Scholar

[31]

B. Rubin, Notes on radon transforms in integral geometry,, Fract. Calc. Appl. Anal., 6 (2003), 25. Google Scholar

[32]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces,, J. Diff. Geom., 88 (2011), 161. Google Scholar

[33]

D. Sarason, Complex Function Theory,, American Mathematical Society, (2007). Google Scholar

[34]

V. Sharafudtinov, Integral Geometry of Tensor Fields,, VSP, (1994). doi: 10.1515/9783110900095. Google Scholar

[35]

G. Uhlmann, Inside Out: Inverse Problems and Applications,, Cambridge University Press, (2003). doi: 10.1090/conm/333. Google Scholar

[36]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970). Google Scholar

[37]

M. E. Taylor, Partial Differential Equations,, vol. 115-117 of Applied Mathematical Sciences, (1996), 115. Google Scholar

show all references

References:
[1]

L. Ahlfors, Complex Analysis,, McGraw-Hill, (1978). Google Scholar

[2]

L. V. Ahlfors, Lectures on Quasiconformal Mappings,, University Lecture Series, (2006). Google Scholar

[3]

L. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics,, Ann. of Math, 72 (1960), 385. Google Scholar

[4]

E. Arbuzov, A. Bukhgeim and S. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions,, Siberian Advances in Mathematics, 8 (1998), 1. Google Scholar

[5]

K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane,, Princeton University Press, (2009). Google Scholar

[6]

G. Bal, Ray transforms in hyperbolic geometry,, J. Math. Pures Appl., 84 (2005), 1362. doi: 10.1016/j.matpur.2005.02.001. Google Scholar

[7]

G. Bal, On the attenuated Radon transform with full and partial measurements,, Inverse Problems, 20 (2004), 399. doi: 10.1088/0266-5611/20/2/006. Google Scholar

[8]

H. Begehr, Complex Analytic Methods for Partial Differential Equations,, World Scientific Publishing Co., (1994). Google Scholar

[9]

C. Berenstein and E. C. Tarabush, Integral geometry in hyperbolic spaces and electrical impedance tomography,, SIAM J. Appl. Math., 56 (1996), 755. doi: 10.1137/S0036139994277348. Google Scholar

[10]

P. Colwell, Blaschke Products: Bounded Analytical Functions,, University of Michigan Press, (1985). Google Scholar

[11]

L. Ehrenpreis, The Universality of the Radon Transform,, Oxford Mathematical Monographs, (2003). doi: 10.1093/acprof:oso/9780198509783.001.0001. Google Scholar

[12]

L. C. Evans, Partial Differential Equations,, 19 of Graduate Studies in Mathematics, (1998). Google Scholar

[13]

D. Finch, Uniqueness for the X-ray transform in the physical range,, Inverse Problems, 2 (1986), 197. doi: 10.1088/0266-5611/2/2/010. Google Scholar

[14]

M. J. Ablowitz and A. S. Fokas, Complex Variables: Introduction and Applications,, Cambridge Texts in Applied Mathematics, (2003). doi: 10.1017/CBO9780511791246. Google Scholar

[15]

J. B. Garnett, Bounded Analytic Functions,, Springer New York, (1981). Google Scholar

[16]

R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable,, 40 of Graduate Studies in Mathematics, (2006). Google Scholar

[17]

D. Griffiths, Introduction to Elementary Particles,, Wiley-VCH, (2008). doi: 10.1002/9783527618460. Google Scholar

[18]

S. Helgason, The Radon Transform,, 5 of Progress in Mathematics, (1980). Google Scholar

[19]

______, Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators and Spherical Functions),, American Mathematical Society, (2000). Google Scholar

[20]

______, The inversion of the x-ray transform on a compact symmetric space,, Journal of Lie Theory, 17 (2007), 307. Google Scholar

[21]

L. Hormander, Complex Analysis in Several Variables,, North Holland, (1990). Google Scholar

[22]

S. S. Romesh Kumar, Inner functions and substitution operators,, Acta Sci. Math. (Szegal), 58 (1993), 509. Google Scholar

[23]

J. M. Lee, Riemannian Manifolds: An Introduction to Curvature,, 176 in Graduate Texts in Mathematics, (1997). Google Scholar

[24]

F. Natterer, Inversion of the attenuated radon transform,, Inverse Problems, 17 (2001), 113. doi: 10.1088/0266-5611/17/1/309. Google Scholar

[25]

F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction,, (Monographs on Mathematical Modeling and Computation), (2007). doi: 10.1118/1.1455744. Google Scholar

[26]

Z. Nehari, Conformal Mappings,, McGraw-Hill Book Company, (1952). Google Scholar

[27]

R. Novikov, An inversion formula for the attenuated x-ray transformation,, Ark. Math, 40 (2002), 145. doi: 10.1007/BF02384507. Google Scholar

[28]

L. Pestov and G. Uhlmann, On characterization of range and inversion formulas for the geodesic x-ray transform,, International Math. Research Notices, 80 (2004), 4331. doi: 10.1155/S1073792804142116. Google Scholar

[29]

H. Renelt, Elliptic Systems and Quasiconformal Mappings,, John Wiley & Sons Inc, (1988). Google Scholar

[30]

V. Rubakov and S. S. Wilson, Classical Theory of Gauge Fields,, Princeton University Press, (2002). Google Scholar

[31]

B. Rubin, Notes on radon transforms in integral geometry,, Fract. Calc. Appl. Anal., 6 (2003), 25. Google Scholar

[32]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces,, J. Diff. Geom., 88 (2011), 161. Google Scholar

[33]

D. Sarason, Complex Function Theory,, American Mathematical Society, (2007). Google Scholar

[34]

V. Sharafudtinov, Integral Geometry of Tensor Fields,, VSP, (1994). doi: 10.1515/9783110900095. Google Scholar

[35]

G. Uhlmann, Inside Out: Inverse Problems and Applications,, Cambridge University Press, (2003). doi: 10.1090/conm/333. Google Scholar

[36]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970). Google Scholar

[37]

M. E. Taylor, Partial Differential Equations,, vol. 115-117 of Applied Mathematical Sciences, (1996), 115. Google Scholar

[1]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[2]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems & Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[3]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[4]

Thomas Chen, Ryan Denlinger, Nataša Pavlović. Moments and regularity for a Boltzmann equation via Wigner transform. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4979-5015. doi: 10.3934/dcds.2019204

[5]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[6]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[7]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[8]

Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic & Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955

[9]

Jorge Clarke, Christian Olivera, Ciprian Tudor. The transport equation and zero quadratic variation processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2991-3002. doi: 10.3934/dcdsb.2016083

[10]

Alexander Bobylev, Raffaele Esposito. Transport coefficients in the $2$-dimensional Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 789-800. doi: 10.3934/krm.2013.6.789

[11]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[12]

Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems & Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013

[13]

François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems & Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713

[14]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[15]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems & Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

[16]

Mark Hubenthal. The broken ray transform in $n$ dimensions with flat reflecting boundary. Inverse Problems & Imaging, 2015, 9 (1) : 143-161. doi: 10.3934/ipi.2015.9.143

[17]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic & Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[18]

Fang Liu. An inhomogeneous evolution equation involving the normalized infinity Laplacian with a transport term. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2395-2421. doi: 10.3934/cpaa.2018114

[19]

Yohan Penel. An explicit stable numerical scheme for the $1D$ transport equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 641-656. doi: 10.3934/dcdss.2012.5.641

[20]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]