-
Previous Article
Heat source identification based on $l_1$ constrained minimization
- IPI Home
- This Issue
-
Next Article
The linearized problem of magneto-photoelasticity
Superiorization of EM algorithm and its application in Single-Photon Emission Computed Tomography(SPECT)
| 1. | LMAM, School of Mathematical Sciences, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, China, China |
References:
| [1] |
M. N. Wernick and J. N. Aarsvold, Emission Tomography: the Fundamentals of PET and SPECT,, Elsevier Acdamic Press, (2004). |
| [2] |
G. T. Herman, Image Reconstruction from Projection: the Fundamentals of Computerized Tomography,, Academic Press, (1980).
|
| [3] |
F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction,, Society for Industrial and Applied Mathematics, (2001).
doi: 10.1137/1.9780898718324. |
| [4] |
O. Tretiak and C. Metz, The exponential Radon transform,, SIAM Journal on Applied Mathematics, 39 (1980), 341.
doi: 10.1137/0139029. |
| [5] |
F. Natterer, Inversion of the attenuated Radon transform,, Inverse Problems, 17 (2001), 113.
doi: 10.1088/0266-5611/17/1/309. |
| [6] |
R. G. Novikov, An inversion formula for the attenuated X-ray transformation,, Arkiv för Matematik, 40 (2002), 145.
doi: 10.1007/BF02384507. |
| [7] |
F. Noo and J.-M. Wagner, Image reconstruction in 2D SPECT with $180^\circ$ acquisition,, Inverse Problems, 17 (2001), 1357.
doi: 10.1088/0266-5611/17/5/308. |
| [8] |
F. Noo, M. Defrise, J. D. Pack and R. Clackdoyle, Image reconstruction from truncated data in single-photon emission computed tomography with uniform attenuation,, Inverse Problems, 23 (2007), 645.
doi: 10.1088/0266-5611/23/2/011. |
| [9] |
L. A. Shepp and Y. Vardi, Maximum likelihood restoration for emission tomography,, IEEE Transactions on Medical Imaging, 1 (1982), 113. |
| [10] |
H. M. Hudson and R. S. Larkin, Accelerated image reconstruction using ordered subsets of projection data,, IEEE Transactions on Medical Imaging, 13 (1994), 601.
doi: 10.1109/42.363108. |
| [11] |
I. Hsiao and H. Huang, An accelerated ordered subsets reconstruction algorithm using an accelerating power factor for emission tomography,, Physics in Medicine and Biology, 55 (2010), 599.
doi: 10.1088/0031-9155/55/3/003. |
| [12] |
Y. Vardi, L. A. Shepp and L. Kaufman, A statistical model for positron emission tomography,, Journal of the American Statistical Association, 80 (1985), 8.
doi: 10.1080/01621459.1985.10477119. |
| [13] |
R. Gordon, R. Bender and G. T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography,, Journal of Theoretical Biology, 29 (1970), 471.
doi: 10.1016/0022-5193(70)90109-8. |
| [14] |
Y. Censor, T. Elfving and G. T. Herman, Averaging strings of sequential iterations for convex feasibility problems,, in Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, (2001), 101.
doi: 10.1016/S1570-579X(01)80009-4. |
| [15] |
E. Y. Sidky, C.-M. Kao and X. Pan, Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,, X-Ray Science and Technology, 14 (2006), 119. |
| [16] |
S. J. LaRoque, E. Y. Sidky and X. Pan, Accurate image reconstruction from few-view and limited-angle data in diffraction tomography,, Journal of the Optical Society of America, 25 (2008), 1772.
doi: 10.1364/JOSAA.25.001772. |
| [17] |
X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT ccanners still employ traditional, filtered backprojection for image reconstruction?, Inverse Problems, 25 (2009).
doi: 10.1088/0266-5611/25/12/123009. |
| [18] |
M. Defrise, C. Vanhove and X. Liu, An algorithm for total variation regularization in high-dimensional linear problems,, Inverse Problems, 27 (2011).
doi: 10.1088/0266-5611/27/6/065002. |
| [19] |
E. Y. Sidky, J. H. Jøgensen and X. Pan, Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm,, Physics in Medicine and Biology, 57 (2012), 3065.
doi: 10.1088/0031-9155/57/10/3065. |
| [20] |
B. Dong, J. Li and Z. Shen, X-ray CT image reconstruction via wavelet frame based regularization and Radon domain inpainting,, Journal of Scientific Computing, 54 (2013), 333.
doi: 10.1007/s10915-012-9579-6. |
| [21] |
D. Butnariu, R. Davidi, G. T. Herman and I. G. Kazantsev, Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problem,, IEEE Journal of Selected Topics Signal Processing, 1 (2007), 540.
doi: 10.1109/JSTSP.2007.910263. |
| [22] |
G. T. Herman and R. Davidi, Image reconstruction from a small number of projections,, Inverse Problems, 24 (2008).
doi: 10.1088/0266-5611/24/4/045011. |
| [23] |
E. Garduo, G. T. Herman and R. Davidi, Reconstruction from a few projections by $l^1$ minimization of the Haar transform,, Inverse Problems, 24 (2011).
doi: 10.1088/0266-5611/24/4/045011. |
| [24] |
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problem with apllications to imaging,, Journal of Mathematical Imaging and Vision, 40 (2011), 120.
doi: 10.1007/s10851-010-0251-1. |
| [25] |
Y. Censor, R. Davidi and G. T. Herman, Perturbation resilience and superiorization of iteration algorithm,, Inverse Problems, 25 (2010).
doi: 10.1088/0266-5611/26/6/065008. |
| [26] |
R. Davidi, G. T. Herman and Y. Censor, Perturbation-resilient block-iterative projection methods with application to image reconstruction from projection,, International Transactions in Operational Research, 16 (2009), 505.
doi: 10.1111/j.1475-3995.2009.00695.x. |
| [27] |
T. Nikazad, R. Davidi and G. T. Herman, Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction,, Inverse Problems, 28 (2012).
doi: 10.1088/0266-5611/28/3/035005. |
| [28] |
W. Jin, Y. Censor and M. Jiang, A heuristic superiorization-like approach to bioluminescence tomography,, World Congress on Medical Physics and Biomedical Engineering in Proceedings of the International Federation for Medical and Biological Engineering (IFMBE), 39 (2013), 1026. |
| [29] |
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physca D., 60 (1992), 259. |
| [30] |
E. Candes, J. Romberg and T. Tao, The dantzig selector: statistical estimation when $p$ is much larger than $n$,, the Annals of Statistics, 35 (2007), 2313.
doi: 10.1214/009053606000001523. |
| [31] |
D. L. Snyder, T. J. Schulz and J. A. O. Sullivan, Deblurring subject to nonnegativity constraints,, IEEE Transactions on Signal Processing, 40 (1992), 1143. |
| [32] |
E. Candes, J. Romberg and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,, IEEE Transactions on Information Theory, 52 (2006), 489.
doi: 10.1109/TIT.2005.862083. |
| [33] |
H. Yu and G. Wang, Compressed sensing based interior tomography,, Physics in Medicine and Biology, 54 (2009), 2791. |
| [34] |
J. A. fessler, Matlab code for emission tomograph,, Available from: , (). |
show all references
References:
| [1] |
M. N. Wernick and J. N. Aarsvold, Emission Tomography: the Fundamentals of PET and SPECT,, Elsevier Acdamic Press, (2004). |
| [2] |
G. T. Herman, Image Reconstruction from Projection: the Fundamentals of Computerized Tomography,, Academic Press, (1980).
|
| [3] |
F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction,, Society for Industrial and Applied Mathematics, (2001).
doi: 10.1137/1.9780898718324. |
| [4] |
O. Tretiak and C. Metz, The exponential Radon transform,, SIAM Journal on Applied Mathematics, 39 (1980), 341.
doi: 10.1137/0139029. |
| [5] |
F. Natterer, Inversion of the attenuated Radon transform,, Inverse Problems, 17 (2001), 113.
doi: 10.1088/0266-5611/17/1/309. |
| [6] |
R. G. Novikov, An inversion formula for the attenuated X-ray transformation,, Arkiv för Matematik, 40 (2002), 145.
doi: 10.1007/BF02384507. |
| [7] |
F. Noo and J.-M. Wagner, Image reconstruction in 2D SPECT with $180^\circ$ acquisition,, Inverse Problems, 17 (2001), 1357.
doi: 10.1088/0266-5611/17/5/308. |
| [8] |
F. Noo, M. Defrise, J. D. Pack and R. Clackdoyle, Image reconstruction from truncated data in single-photon emission computed tomography with uniform attenuation,, Inverse Problems, 23 (2007), 645.
doi: 10.1088/0266-5611/23/2/011. |
| [9] |
L. A. Shepp and Y. Vardi, Maximum likelihood restoration for emission tomography,, IEEE Transactions on Medical Imaging, 1 (1982), 113. |
| [10] |
H. M. Hudson and R. S. Larkin, Accelerated image reconstruction using ordered subsets of projection data,, IEEE Transactions on Medical Imaging, 13 (1994), 601.
doi: 10.1109/42.363108. |
| [11] |
I. Hsiao and H. Huang, An accelerated ordered subsets reconstruction algorithm using an accelerating power factor for emission tomography,, Physics in Medicine and Biology, 55 (2010), 599.
doi: 10.1088/0031-9155/55/3/003. |
| [12] |
Y. Vardi, L. A. Shepp and L. Kaufman, A statistical model for positron emission tomography,, Journal of the American Statistical Association, 80 (1985), 8.
doi: 10.1080/01621459.1985.10477119. |
| [13] |
R. Gordon, R. Bender and G. T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography,, Journal of Theoretical Biology, 29 (1970), 471.
doi: 10.1016/0022-5193(70)90109-8. |
| [14] |
Y. Censor, T. Elfving and G. T. Herman, Averaging strings of sequential iterations for convex feasibility problems,, in Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, (2001), 101.
doi: 10.1016/S1570-579X(01)80009-4. |
| [15] |
E. Y. Sidky, C.-M. Kao and X. Pan, Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,, X-Ray Science and Technology, 14 (2006), 119. |
| [16] |
S. J. LaRoque, E. Y. Sidky and X. Pan, Accurate image reconstruction from few-view and limited-angle data in diffraction tomography,, Journal of the Optical Society of America, 25 (2008), 1772.
doi: 10.1364/JOSAA.25.001772. |
| [17] |
X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT ccanners still employ traditional, filtered backprojection for image reconstruction?, Inverse Problems, 25 (2009).
doi: 10.1088/0266-5611/25/12/123009. |
| [18] |
M. Defrise, C. Vanhove and X. Liu, An algorithm for total variation regularization in high-dimensional linear problems,, Inverse Problems, 27 (2011).
doi: 10.1088/0266-5611/27/6/065002. |
| [19] |
E. Y. Sidky, J. H. Jøgensen and X. Pan, Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm,, Physics in Medicine and Biology, 57 (2012), 3065.
doi: 10.1088/0031-9155/57/10/3065. |
| [20] |
B. Dong, J. Li and Z. Shen, X-ray CT image reconstruction via wavelet frame based regularization and Radon domain inpainting,, Journal of Scientific Computing, 54 (2013), 333.
doi: 10.1007/s10915-012-9579-6. |
| [21] |
D. Butnariu, R. Davidi, G. T. Herman and I. G. Kazantsev, Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problem,, IEEE Journal of Selected Topics Signal Processing, 1 (2007), 540.
doi: 10.1109/JSTSP.2007.910263. |
| [22] |
G. T. Herman and R. Davidi, Image reconstruction from a small number of projections,, Inverse Problems, 24 (2008).
doi: 10.1088/0266-5611/24/4/045011. |
| [23] |
E. Garduo, G. T. Herman and R. Davidi, Reconstruction from a few projections by $l^1$ minimization of the Haar transform,, Inverse Problems, 24 (2011).
doi: 10.1088/0266-5611/24/4/045011. |
| [24] |
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problem with apllications to imaging,, Journal of Mathematical Imaging and Vision, 40 (2011), 120.
doi: 10.1007/s10851-010-0251-1. |
| [25] |
Y. Censor, R. Davidi and G. T. Herman, Perturbation resilience and superiorization of iteration algorithm,, Inverse Problems, 25 (2010).
doi: 10.1088/0266-5611/26/6/065008. |
| [26] |
R. Davidi, G. T. Herman and Y. Censor, Perturbation-resilient block-iterative projection methods with application to image reconstruction from projection,, International Transactions in Operational Research, 16 (2009), 505.
doi: 10.1111/j.1475-3995.2009.00695.x. |
| [27] |
T. Nikazad, R. Davidi and G. T. Herman, Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction,, Inverse Problems, 28 (2012).
doi: 10.1088/0266-5611/28/3/035005. |
| [28] |
W. Jin, Y. Censor and M. Jiang, A heuristic superiorization-like approach to bioluminescence tomography,, World Congress on Medical Physics and Biomedical Engineering in Proceedings of the International Federation for Medical and Biological Engineering (IFMBE), 39 (2013), 1026. |
| [29] |
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physca D., 60 (1992), 259. |
| [30] |
E. Candes, J. Romberg and T. Tao, The dantzig selector: statistical estimation when $p$ is much larger than $n$,, the Annals of Statistics, 35 (2007), 2313.
doi: 10.1214/009053606000001523. |
| [31] |
D. L. Snyder, T. J. Schulz and J. A. O. Sullivan, Deblurring subject to nonnegativity constraints,, IEEE Transactions on Signal Processing, 40 (1992), 1143. |
| [32] |
E. Candes, J. Romberg and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,, IEEE Transactions on Information Theory, 52 (2006), 489.
doi: 10.1109/TIT.2005.862083. |
| [33] |
H. Yu and G. Wang, Compressed sensing based interior tomography,, Physics in Medicine and Biology, 54 (2009), 2791. |
| [34] |
J. A. fessler, Matlab code for emission tomograph,, Available from: , (). |
| [1] |
Ming Yan, Alex A. T. Bui, Jason Cong, Luminita A. Vese. General convergent expectation maximization (EM)-type algorithms for image reconstruction. Inverse Problems & Imaging, 2013, 7 (3) : 1007-1029. doi: 10.3934/ipi.2013.7.1007 |
| [2] |
Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems & Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199 |
| [3] |
Yunmei Chen, Xiaojing Ye, Feng Huang. A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data. Inverse Problems & Imaging, 2010, 4 (2) : 223-240. doi: 10.3934/ipi.2010.4.223 |
| [4] |
Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems & Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010 |
| [5] |
Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1297-1309. doi: 10.3934/dcdss.2019089 |
| [6] |
Yunhai Xiao, Junfeng Yang, Xiaoming Yuan. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems & Imaging, 2012, 6 (3) : 547-563. doi: 10.3934/ipi.2012.6.547 |
| [7] |
Chengxiang Wang, Li Zeng, Yumeng Guo, Lingli Zhang. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems & Imaging, 2017, 11 (6) : 917-948. doi: 10.3934/ipi.2017043 |
| [8] |
Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems & Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645 |
| [9] |
Xiaohong Zhu, Lihe Zhou, Zili Yang, Joyati Debnath. A new text information extraction algorithm of video image under multimedia environment. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1265-1279. doi: 10.3934/dcdss.2019087 |
| [10] |
Jiangchuan Fan, Xinyu Guo, Jianjun Du, Weiliang Wen, Xianju Lu, Brahmani Louiza. Analysis of the clustering fusion algorithm for multi-band color image. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1233-1249. doi: 10.3934/dcdss.2019085 |
| [11] |
Yi Zhang, Xiao-Li Ma. Research on image digital watermarking optimization algorithm under virtual reality technology. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1427-1440. doi: 10.3934/dcdss.2019098 |
| [12] |
Xiaohong Zhu, Zili Yang, Tabharit Zoubir. Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1281-1296. doi: 10.3934/dcdss.2019088 |
| [13] |
Xin Li, Ziguan Cui, Linhui Sun, Guanming Lu, Debnath Narayan. Research on iterative repair algorithm of Hyperchaotic image based on support vector machine. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1199-1218. doi: 10.3934/dcdss.2019083 |
| [14] |
Yonggui Zhu, Yuying Shi, Bin Zhang, Xinyan Yu. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Problems & Imaging, 2014, 8 (3) : 925-937. doi: 10.3934/ipi.2014.8.925 |
| [15] |
Esther Klann, Ronny Ramlau, Wolfgang Ring. A Mumford-Shah level-set approach for the inversion and segmentation of SPECT/CT data. Inverse Problems & Imaging, 2011, 5 (1) : 137-166. doi: 10.3934/ipi.2011.5.137 |
| [16] |
Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173 |
| [17] |
Jiaqing Yang, Bo Zhang, Ruming Zhang. Reconstruction of penetrable grating profiles. Inverse Problems & Imaging, 2013, 7 (4) : 1393-1407. doi: 10.3934/ipi.2013.7.1393 |
| [18] |
Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration. Mathematical Biosciences & Engineering, 2006, 3 (2) : 389-418. doi: 10.3934/mbe.2006.3.389 |
| [19] |
Antoni Buades, Bartomeu Coll, Jose-Luis Lisani, Catalina Sbert. Conditional image diffusion. Inverse Problems & Imaging, 2007, 1 (4) : 593-608. doi: 10.3934/ipi.2007.1.593 |
| [20] |
Horst Heck, Gunther Uhlmann, Jenn-Nan Wang. Reconstruction of obstacles immersed in an incompressible fluid. Inverse Problems & Imaging, 2007, 1 (1) : 63-76. doi: 10.3934/ipi.2007.1.63 |
2017 Impact Factor: 1.465
Tools
Metrics
Other articles
by authors
[Back to Top]






