-
Previous Article
Invariant measure selection by noise. An example
- DCDS Home
- This Issue
-
Next Article
Robust null controllability for heat equations with unknown switching control mode
Invariant measures for non-autonomous dissipative dynamical systems
1. | University of Warsaw, Institute of Applied Mathematics and Mechanics, Banacha 2, 02-097 Warsaw |
2. | Mathematics Institute, University of Warwick, Coventry, CV4 7AL., United Kingdom |
References:
[1] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[2] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Math. Acad. Sci. Paris, 342 (2006), 263-268.
doi: 10.1016/j.crma.2005.12.015. |
[3] |
T. Caraballo, P. E. Kloeden and J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 761-781.
doi: 10.3934/dcdsb.2008.10.761. |
[4] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York, 2012.
doi: 10.1007/978-1-4614-4581-4. |
[5] |
M. Chekroun and N. E. Glatt-Holtz, Invariant measures for dissipative dynamical systems: Abstract results and applications, Comm. Math. Phys., 316 (2012), 723-761.
doi: 10.1007/s00220-012-1515-y. |
[6] |
C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, 2001.
doi: 10.1017/CBO9780511546754. |
[7] |
P. E. Kloeden, P. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 8 (2009), 785-802.
doi: 10.3934/cpaa.2009.8.785. |
[8] |
G. Łukaszewicz, Pullback attractors and statistical solutions for 2-D Navier-Stokes equations, Discrete Continu. Dyn. Syst. Ser. B, 9 (2008), 643-659.
doi: 10.3934/dcdsb.2008.9.643. |
[9] |
G. Łukaszewicz, J. Real and J. C. Robinson, Invariant measures for dissipative systems and generalised banach limits, J. Dynam. Differential Equations, 23 (2011), 225-250.
doi: 10.1007/s10884-011-9213-6. |
[10] |
V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton University Press, Princeton, 1960. |
[11] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0. |
[12] |
R. Rosa, The global attractor for the 2 D Navier-Stokes flow on some unbounded domains, Nonlinear Anal., 32 (1998), 71-85.
doi: 10.1016/S0362-546X(97)00453-7. |
[13] |
R. Temam, Navier-Stokes equations, Theory and Numerical Analysis, 2nd. ed., North Holland, Amsterdam, 1979. |
[14] |
A. M. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes: With Applications to Statistics, Springer, New York, 2000. |
[15] |
X. Wang, Upper semi-continuity of stationary statistical properties of dissipative systems, Discrete Contin. Dyn. Syst., 23 (2009), 521-540.
doi: 10.3934/dcds.2009.23.521. |
show all references
References:
[1] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[2] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Math. Acad. Sci. Paris, 342 (2006), 263-268.
doi: 10.1016/j.crma.2005.12.015. |
[3] |
T. Caraballo, P. E. Kloeden and J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 761-781.
doi: 10.3934/dcdsb.2008.10.761. |
[4] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York, 2012.
doi: 10.1007/978-1-4614-4581-4. |
[5] |
M. Chekroun and N. E. Glatt-Holtz, Invariant measures for dissipative dynamical systems: Abstract results and applications, Comm. Math. Phys., 316 (2012), 723-761.
doi: 10.1007/s00220-012-1515-y. |
[6] |
C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, 2001.
doi: 10.1017/CBO9780511546754. |
[7] |
P. E. Kloeden, P. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 8 (2009), 785-802.
doi: 10.3934/cpaa.2009.8.785. |
[8] |
G. Łukaszewicz, Pullback attractors and statistical solutions for 2-D Navier-Stokes equations, Discrete Continu. Dyn. Syst. Ser. B, 9 (2008), 643-659.
doi: 10.3934/dcdsb.2008.9.643. |
[9] |
G. Łukaszewicz, J. Real and J. C. Robinson, Invariant measures for dissipative systems and generalised banach limits, J. Dynam. Differential Equations, 23 (2011), 225-250.
doi: 10.1007/s10884-011-9213-6. |
[10] |
V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton University Press, Princeton, 1960. |
[11] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0. |
[12] |
R. Rosa, The global attractor for the 2 D Navier-Stokes flow on some unbounded domains, Nonlinear Anal., 32 (1998), 71-85.
doi: 10.1016/S0362-546X(97)00453-7. |
[13] |
R. Temam, Navier-Stokes equations, Theory and Numerical Analysis, 2nd. ed., North Holland, Amsterdam, 1979. |
[14] |
A. M. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes: With Applications to Statistics, Springer, New York, 2000. |
[15] |
X. Wang, Upper semi-continuity of stationary statistical properties of dissipative systems, Discrete Contin. Dyn. Syst., 23 (2009), 521-540.
doi: 10.3934/dcds.2009.23.521. |
[1] |
Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524 |
[2] |
Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032 |
[3] |
Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085 |
[4] |
Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140 |
[5] |
Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223 |
[6] |
Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118. |
[7] |
Chuchu Chen, Jialin Hong, Yulan Lu. Stochastic differential equation with piecewise continuous arguments: Markov property, invariant measure and numerical approximation. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022098 |
[8] |
Zeqi Zhu, Caidi Zhao. Pullback attractor and invariant measures for the three-dimensional regularized MHD equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1461-1477. doi: 10.3934/dcds.2018060 |
[9] |
Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101 |
[10] |
Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008 |
[11] |
Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123 |
[12] |
Shulin Wang, Yangrong Li. Probabilistic continuity of a pullback random attractor in time-sample. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2699-2722. doi: 10.3934/dcdsb.2020028 |
[13] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[14] |
David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298 |
[15] |
Piotr Gwiazda, Sander C. Hille, Kamila Łyczek, Agnieszka Świerczewska-Gwiazda. Differentiability in perturbation parameter of measure solutions to perturbed transport equation. Kinetic and Related Models, 2019, 12 (5) : 1093-1108. doi: 10.3934/krm.2019041 |
[16] |
Jawad Al-Khal, Henk Bruin, Michael Jakobson. New examples of S-unimodal maps with a sigma-finite absolutely continuous invariant measure. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 35-61. doi: 10.3934/dcds.2008.22.35 |
[17] |
Andriy Stanzhytsky, Oleksandr Misiats, Oleksandr Stanzhytskyi. Invariant measure for neutral stochastic functional differential equations with non-Lipschitz coefficients. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022005 |
[18] |
Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207 |
[19] |
Welington Cordeiro, Manfred Denker, Xuan Zhang. On specification and measure expansiveness. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1941-1957. doi: 10.3934/dcds.2017082 |
[20] |
Welington Cordeiro, Manfred Denker, Xuan Zhang. Corrigendum to: On specification and measure expansiveness. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3705-3706. doi: 10.3934/dcds.2018160 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]