2014, 1(1): 71-109. doi: 10.3934/jcd.2014.1.71

Continuation and collapse of homoclinic tangles

1. 

Department of Mathematics, Bielefeld University, P.O. Box 100131, 33501 Bielefeld

2. 

Department of Mathematics, Bielefeld University, POB 100131, 33501 Bielefeld

Received  February 2011 Revised  June 2012 Published  April 2014

By a classical theorem transversal homoclinic points of maps lead to shift dynamics on a maximal invariant set, also referred to as a homoclinic tangle. In this paper we study the fate of homoclinic tangles in parameterized systems from the viewpoint of numerical continuation and bifurcation theory. The new bifurcation result shows that the maximal invariant set near a homoclinic tangency, where two homoclinic tangles collide, can be characterized by a system of bifurcation equations that is indexed by a symbolic sequence. These bifurcation equations consist of a finite or infinite set of hilltop normal forms known from singularity theory. For the Hénon family we determine numerically the connected components of branches with multi-humped homoclinic orbits that pass through several tangencies. The homoclinic network found by numerical continuation is explained by combining our bifurcation result with graph-theoretical arguments.
Citation: Wolf-Jürgen Beyn, Thorsten Hüls. Continuation and collapse of homoclinic tangles. Journal of Computational Dynamics, 2014, 1 (1) : 71-109. doi: 10.3934/jcd.2014.1.71
References:
[1]

E. L. Allgower and K. Georg, Numerical Continuation Methods,, Springer-Verlag, (1990). doi: 10.1007/978-3-642-61257-2.

[2]

W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems,, IMA J. Numer. Anal., 10 (1990), 379. doi: 10.1093/imanum/10.3.379.

[3]

W.-J. Beyn and J.-M. Kleinkauf, The numerical computation of homoclinic orbits for maps,, SIAM J. Numer. Anal., 34 (1997), 1207. doi: 10.1137/S0036142995281693.

[4]

W.-J. Beyn, T. Hüls, J.-M. Kleinkauf and Y. Zou, Numerical analysis of degenerate connecting orbits for maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 3385. doi: 10.1142/S0218127404011405.

[5]

C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, vol. 102 of Encyclopaedia of Mathematical Sciences,, Springer-Verlag, (2005).

[6]

H. Broer, C. Simó and J. C. Tatjer, Towards global models near homoclinic tangencies of dissipative diffeomorphisms,, Nonlinearity, 11 (1998), 667. doi: 10.1088/0951-7715/11/3/015.

[7]

P. Collins, Symbolic dynamics from homoclinic tangles,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 605. doi: 10.1142/S0218127402004565.

[8]

P. Collins, Dynamics of surface diffeomorphisms relative to homoclinic and heteroclinic orbits,, Dyn. Syst., 19 (2004), 1. doi: 10.1080/14689360310001623421.

[9]

P. Collins and B. Krauskopf, Entropy and bifurcations in a chaotic laser,, Phys. Rev. E (3), 66 (2002). doi: 10.1103/PhysRevE.66.056201.

[10]

D. W. Decker and H. B. Keller, Path following near bifurcation,, Comm. Pure Appl. Math., 34 (1981), 149. doi: 10.1002/cpa.3160340202.

[11]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems,, 2nd edition, (1989).

[12]

J. P. England, B. Krauskopf and H. M. Osinga, Computing one-dimensional stable manifolds and stable sets of planar maps without the inverse,, SIAM J. Appl. Dyn. Syst., 3 (2004), 161. doi: 10.1137/030600131.

[13]

R. K. Ghaziani, W. Govaerts, Y. A. Kuznetsov and H. G. E. Meijer, Numerical continuation of connecting orbits of maps in MATLAB,, J. Difference Equ. Appl., 15 (2009), 849. doi: 10.1080/10236190802357677.

[14]

M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory. Vol. I,, vol. 51 of Applied Mathematical Sciences, (1985).

[15]

S. V. Gonchenko, D. V. Turaev and L. P. Shilnikov, On the dynamic properties of diffeomorphisms with homoclinic tangencies,, Sovrem. Mat. Prilozh., 7 (2003), 91. doi: 10.1007/s10958-005-0107-1.

[16]

V. S. Gonchenko, Y. A. Kuznetsov and H. G. E. Meijer, Generalized Hénon map and bifurcations of homoclinic tangencies,, SIAM J. Appl. Dyn. Syst., 4 (2005), 407. doi: 10.1137/04060487X.

[17]

W. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria,, Society for Industrial and Applied Mathematics (SIAM), (2000). doi: 10.1137/1.9780898719543.

[18]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42 of Applied Mathematical Sciences,, Springer-Verlag, (1990).

[19]

J. K. Hale and H. Koçak, Dynamics and Bifurcations,, vol. 3 of Texts in Applied Mathematics, (1991). doi: 10.1007/978-1-4612-4426-4.

[20]

M. Hénon, A two-dimensional mapping with a strange attractor,, Comm. Math. Phys., 50 (1976), 69. doi: 10.1007/BF01608556.

[21]

A. J. Homburg and B. Krauskopf, Resonant homoclinic flip bifurcations,, J. Dynam. Differential Equations, 12 (2000), 807. doi: 10.1023/A:1009046621861.

[22]

A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields,, in Handbook of Dynamical Systems III, (2010), 379. doi: 10.1016/S1874-575X(10)00316-4.

[23]

T. Hüls, Homoclinic trajectories of non-autonomous maps,, J. Difference Equ. Appl., 17 (2011), 9. doi: 10.1080/10236190902932742.

[24]

M. C. Irwin, Smooth Dynamical Systems,, vol. 17 of Advanced Series in Nonlinear Dynamics, (2001). doi: 10.1142/9789812810120.

[25]

H. B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems,, in Applications of bifurcation theory (Proc. Advanced Sem., (1976), 359.

[26]

J.-M. Kleinkauf, The Numerical Computation and Geometrical Analysis of Heteroclinic Tangencies,, Technical Report 98-048, (1998), 98.

[27]

J.-M. Kleinkauf, Numerische Analyse Tangentialer Homokliner Orbits,, PhD thesis, (1998).

[28]

J. Knobloch, Chaotic behaviour near non-transversal homoclinic points with quadratic tangency,, J. Difference Equ. Appl., 12 (2006), 1037. doi: 10.1080/10236190600986644.

[29]

J. Knobloch and T. Rieş, Lin's method for heteroclinic chains involving periodic orbits,, Nonlinearity, 23 (2010), 23. doi: 10.1088/0951-7715/23/1/002.

[30]

B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz and O. Junge, A survey of methods for computing (un)stable manifolds of vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 763. doi: 10.1142/S0218127405012533.

[31]

B. Krauskopf and T. Rieş, A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits,, Nonlinearity, 21 (2008), 1655. doi: 10.1088/0951-7715/21/8/001.

[32]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511626302.

[33]

C. Mira, Chaotic Dynamics,, World Scientific Publishing Co., (1987).

[34]

B. E. Oldeman, A. R. Champneys and B. Krauskopf, Homoclinic branch switching: A numerical implementation of Lin's method,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2977. doi: 10.1142/S0218127403008326.

[35]

J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, vol. 35 of Cambridge Studies in Advanced Mathematics,, Cambridge University Press, (1993).

[36]

K. Palmer, Shadowing in Dynamical Systems, vol. 501 of Mathematics and its Applications,, Kluwer Academic Publishers, (2000).

[37]

K. J. Palmer, Exponential dichotomies, the shadowing lemma and transversal homoclinic points,, in Dynamics reported, 1 (1988), 265.

[38]

S. Y. Pilyugin, Shadowing in Dynamical Systems, vol. 1706 of Lecture Notes in Mathematics,, Springer-Verlag, (1999).

[39]

J. D. M. Rademacher, Lyapunov-Schmidt reduction for unfolding heteroclinic networks of equilibria and periodic orbits with tangencies,, J. Differential Equations, 249 (2010), 305. doi: 10.1016/j.jde.2010.04.007.

[40]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems,, J. Differential Equations, 27 (1978), 320. doi: 10.1016/0022-0396(78)90057-8.

[41]

B. Sandstede, Constructing dynamical systems having homoclinic bifurcation points of codimension two,, J. Dynam. Differential Equations, 9 (1997), 269. doi: 10.1007/BF02219223.

[42]

M. Shub, Global Stability of Dynamical Systems,, Springer-Verlag, (1987).

[43]

L. P. Šil'nikov, Existence of a countable set of periodic motions in a neighborhood of a homoclinic curve,, Dokl. Akad. Nauk SSSR, 172 (1967), 298.

[44]

S. Smale, Differentiable dynamical systems,, Bull. Amer. Math. Soc., 73 (1967), 747. doi: 10.1090/S0002-9904-1967-11798-1.

show all references

References:
[1]

E. L. Allgower and K. Georg, Numerical Continuation Methods,, Springer-Verlag, (1990). doi: 10.1007/978-3-642-61257-2.

[2]

W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems,, IMA J. Numer. Anal., 10 (1990), 379. doi: 10.1093/imanum/10.3.379.

[3]

W.-J. Beyn and J.-M. Kleinkauf, The numerical computation of homoclinic orbits for maps,, SIAM J. Numer. Anal., 34 (1997), 1207. doi: 10.1137/S0036142995281693.

[4]

W.-J. Beyn, T. Hüls, J.-M. Kleinkauf and Y. Zou, Numerical analysis of degenerate connecting orbits for maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 3385. doi: 10.1142/S0218127404011405.

[5]

C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, vol. 102 of Encyclopaedia of Mathematical Sciences,, Springer-Verlag, (2005).

[6]

H. Broer, C. Simó and J. C. Tatjer, Towards global models near homoclinic tangencies of dissipative diffeomorphisms,, Nonlinearity, 11 (1998), 667. doi: 10.1088/0951-7715/11/3/015.

[7]

P. Collins, Symbolic dynamics from homoclinic tangles,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 605. doi: 10.1142/S0218127402004565.

[8]

P. Collins, Dynamics of surface diffeomorphisms relative to homoclinic and heteroclinic orbits,, Dyn. Syst., 19 (2004), 1. doi: 10.1080/14689360310001623421.

[9]

P. Collins and B. Krauskopf, Entropy and bifurcations in a chaotic laser,, Phys. Rev. E (3), 66 (2002). doi: 10.1103/PhysRevE.66.056201.

[10]

D. W. Decker and H. B. Keller, Path following near bifurcation,, Comm. Pure Appl. Math., 34 (1981), 149. doi: 10.1002/cpa.3160340202.

[11]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems,, 2nd edition, (1989).

[12]

J. P. England, B. Krauskopf and H. M. Osinga, Computing one-dimensional stable manifolds and stable sets of planar maps without the inverse,, SIAM J. Appl. Dyn. Syst., 3 (2004), 161. doi: 10.1137/030600131.

[13]

R. K. Ghaziani, W. Govaerts, Y. A. Kuznetsov and H. G. E. Meijer, Numerical continuation of connecting orbits of maps in MATLAB,, J. Difference Equ. Appl., 15 (2009), 849. doi: 10.1080/10236190802357677.

[14]

M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory. Vol. I,, vol. 51 of Applied Mathematical Sciences, (1985).

[15]

S. V. Gonchenko, D. V. Turaev and L. P. Shilnikov, On the dynamic properties of diffeomorphisms with homoclinic tangencies,, Sovrem. Mat. Prilozh., 7 (2003), 91. doi: 10.1007/s10958-005-0107-1.

[16]

V. S. Gonchenko, Y. A. Kuznetsov and H. G. E. Meijer, Generalized Hénon map and bifurcations of homoclinic tangencies,, SIAM J. Appl. Dyn. Syst., 4 (2005), 407. doi: 10.1137/04060487X.

[17]

W. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria,, Society for Industrial and Applied Mathematics (SIAM), (2000). doi: 10.1137/1.9780898719543.

[18]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42 of Applied Mathematical Sciences,, Springer-Verlag, (1990).

[19]

J. K. Hale and H. Koçak, Dynamics and Bifurcations,, vol. 3 of Texts in Applied Mathematics, (1991). doi: 10.1007/978-1-4612-4426-4.

[20]

M. Hénon, A two-dimensional mapping with a strange attractor,, Comm. Math. Phys., 50 (1976), 69. doi: 10.1007/BF01608556.

[21]

A. J. Homburg and B. Krauskopf, Resonant homoclinic flip bifurcations,, J. Dynam. Differential Equations, 12 (2000), 807. doi: 10.1023/A:1009046621861.

[22]

A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields,, in Handbook of Dynamical Systems III, (2010), 379. doi: 10.1016/S1874-575X(10)00316-4.

[23]

T. Hüls, Homoclinic trajectories of non-autonomous maps,, J. Difference Equ. Appl., 17 (2011), 9. doi: 10.1080/10236190902932742.

[24]

M. C. Irwin, Smooth Dynamical Systems,, vol. 17 of Advanced Series in Nonlinear Dynamics, (2001). doi: 10.1142/9789812810120.

[25]

H. B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems,, in Applications of bifurcation theory (Proc. Advanced Sem., (1976), 359.

[26]

J.-M. Kleinkauf, The Numerical Computation and Geometrical Analysis of Heteroclinic Tangencies,, Technical Report 98-048, (1998), 98.

[27]

J.-M. Kleinkauf, Numerische Analyse Tangentialer Homokliner Orbits,, PhD thesis, (1998).

[28]

J. Knobloch, Chaotic behaviour near non-transversal homoclinic points with quadratic tangency,, J. Difference Equ. Appl., 12 (2006), 1037. doi: 10.1080/10236190600986644.

[29]

J. Knobloch and T. Rieş, Lin's method for heteroclinic chains involving periodic orbits,, Nonlinearity, 23 (2010), 23. doi: 10.1088/0951-7715/23/1/002.

[30]

B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz and O. Junge, A survey of methods for computing (un)stable manifolds of vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 763. doi: 10.1142/S0218127405012533.

[31]

B. Krauskopf and T. Rieş, A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits,, Nonlinearity, 21 (2008), 1655. doi: 10.1088/0951-7715/21/8/001.

[32]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511626302.

[33]

C. Mira, Chaotic Dynamics,, World Scientific Publishing Co., (1987).

[34]

B. E. Oldeman, A. R. Champneys and B. Krauskopf, Homoclinic branch switching: A numerical implementation of Lin's method,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2977. doi: 10.1142/S0218127403008326.

[35]

J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, vol. 35 of Cambridge Studies in Advanced Mathematics,, Cambridge University Press, (1993).

[36]

K. Palmer, Shadowing in Dynamical Systems, vol. 501 of Mathematics and its Applications,, Kluwer Academic Publishers, (2000).

[37]

K. J. Palmer, Exponential dichotomies, the shadowing lemma and transversal homoclinic points,, in Dynamics reported, 1 (1988), 265.

[38]

S. Y. Pilyugin, Shadowing in Dynamical Systems, vol. 1706 of Lecture Notes in Mathematics,, Springer-Verlag, (1999).

[39]

J. D. M. Rademacher, Lyapunov-Schmidt reduction for unfolding heteroclinic networks of equilibria and periodic orbits with tangencies,, J. Differential Equations, 249 (2010), 305. doi: 10.1016/j.jde.2010.04.007.

[40]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems,, J. Differential Equations, 27 (1978), 320. doi: 10.1016/0022-0396(78)90057-8.

[41]

B. Sandstede, Constructing dynamical systems having homoclinic bifurcation points of codimension two,, J. Dynam. Differential Equations, 9 (1997), 269. doi: 10.1007/BF02219223.

[42]

M. Shub, Global Stability of Dynamical Systems,, Springer-Verlag, (1987).

[43]

L. P. Šil'nikov, Existence of a countable set of periodic motions in a neighborhood of a homoclinic curve,, Dokl. Akad. Nauk SSSR, 172 (1967), 298.

[44]

S. Smale, Differentiable dynamical systems,, Bull. Amer. Math. Soc., 73 (1967), 747. doi: 10.1090/S0002-9904-1967-11798-1.

[1]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[2]

Flaviano Battelli, Claudio Lazzari. On the bifurcation from critical homoclinic orbits in n-dimensional maps. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 289-303. doi: 10.3934/dcds.1997.3.289

[3]

Amadeu Delshams, Pere Gutiérrez. Exponentially small splitting for whiskered tori in Hamiltonian systems: continuation of transverse homoclinic orbits. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 757-783. doi: 10.3934/dcds.2004.11.757

[4]

Eleonora Catsigeras, Marcelo Cerminara, Heber Enrich. Simultaneous continuation of infinitely many sinks at homoclinic bifurcations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 693-736. doi: 10.3934/dcds.2011.29.693

[5]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[6]

Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1

[7]

S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493

[8]

Addolorata Salvatore. Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 778-787. doi: 10.3934/proc.2003.2003.778

[9]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929

[10]

Jianquan Li, Yanni Xiao, Yali Yang. Global analysis of a simple parasite-host model with homoclinic orbits. Mathematical Biosciences & Engineering, 2012, 9 (4) : 767-784. doi: 10.3934/mbe.2012.9.767

[11]

Yingxiang Xu, Yongkui Zou. Preservation of homoclinic orbits under discretization of delay differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 275-299. doi: 10.3934/dcds.2011.31.275

[12]

John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851

[13]

W.R. Derrick, P. van den Driessche. Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 299-309. doi: 10.3934/dcdsb.2003.3.299

[14]

Christian Bonatti, Lorenzo J. Díaz, Todd Fisher. Super-exponential growth of the number of periodic orbits inside homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 589-604. doi: 10.3934/dcds.2008.20.589

[15]

Chen-Chang Peng, Kuan-Ju Chen. Existence of transversal homoclinic orbits in higher dimensional discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1181-1197. doi: 10.3934/dcdsb.2010.14.1181

[16]

Flaviano Battelli, Ken Palmer. A remark about Sil'nikov saddle-focus homoclinic orbits. Communications on Pure & Applied Analysis, 2011, 10 (3) : 817-830. doi: 10.3934/cpaa.2011.10.817

[17]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[18]

Boris Buffoni, Laurent Landry. Multiplicity of homoclinic orbits in quasi-linear autonomous Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 75-116. doi: 10.3934/dcds.2010.27.75

[19]

Daniel Wilczak. Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1039-1055. doi: 10.3934/dcdsb.2009.11.1039

[20]

Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

 Impact Factor: 

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]