# American Institute of Mathematical Sciences

2014, 1(1): 71-109. doi: 10.3934/jcd.2014.1.71

## Continuation and collapse of homoclinic tangles

 1 Department of Mathematics, Bielefeld University, P.O. Box 100131, 33501 Bielefeld 2 Department of Mathematics, Bielefeld University, POB 100131, 33501 Bielefeld

Received  February 2011 Revised  June 2012 Published  April 2014

By a classical theorem transversal homoclinic points of maps lead to shift dynamics on a maximal invariant set, also referred to as a homoclinic tangle. In this paper we study the fate of homoclinic tangles in parameterized systems from the viewpoint of numerical continuation and bifurcation theory. The new bifurcation result shows that the maximal invariant set near a homoclinic tangency, where two homoclinic tangles collide, can be characterized by a system of bifurcation equations that is indexed by a symbolic sequence. These bifurcation equations consist of a finite or infinite set of hilltop normal forms known from singularity theory. For the Hénon family we determine numerically the connected components of branches with multi-humped homoclinic orbits that pass through several tangencies. The homoclinic network found by numerical continuation is explained by combining our bifurcation result with graph-theoretical arguments.
Citation: Wolf-Jürgen Beyn, Thorsten Hüls. Continuation and collapse of homoclinic tangles. Journal of Computational Dynamics, 2014, 1 (1) : 71-109. doi: 10.3934/jcd.2014.1.71
##### References:

show all references

##### References:
 [1] Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203 [2] Flaviano Battelli, Claudio Lazzari. On the bifurcation from critical homoclinic orbits in n-dimensional maps. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 289-303. doi: 10.3934/dcds.1997.3.289 [3] Amadeu Delshams, Pere Gutiérrez. Exponentially small splitting for whiskered tori in Hamiltonian systems: continuation of transverse homoclinic orbits. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 757-783. doi: 10.3934/dcds.2004.11.757 [4] Eleonora Catsigeras, Marcelo Cerminara, Heber Enrich. Simultaneous continuation of infinitely many sinks at homoclinic bifurcations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 693-736. doi: 10.3934/dcds.2011.29.693 [5] Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419 [6] Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1 [7] S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493 [8] Addolorata Salvatore. Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 778-787. doi: 10.3934/proc.2003.2003.778 [9] Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929 [10] Jianquan Li, Yanni Xiao, Yali Yang. Global analysis of a simple parasite-host model with homoclinic orbits. Mathematical Biosciences & Engineering, 2012, 9 (4) : 767-784. doi: 10.3934/mbe.2012.9.767 [11] Yingxiang Xu, Yongkui Zou. Preservation of homoclinic orbits under discretization of delay differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 275-299. doi: 10.3934/dcds.2011.31.275 [12] John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851 [13] W.R. Derrick, P. van den Driessche. Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 299-309. doi: 10.3934/dcdsb.2003.3.299 [14] Christian Bonatti, Lorenzo J. Díaz, Todd Fisher. Super-exponential growth of the number of periodic orbits inside homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 589-604. doi: 10.3934/dcds.2008.20.589 [15] Chen-Chang Peng, Kuan-Ju Chen. Existence of transversal homoclinic orbits in higher dimensional discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1181-1197. doi: 10.3934/dcdsb.2010.14.1181 [16] Flaviano Battelli, Ken Palmer. A remark about Sil'nikov saddle-focus homoclinic orbits. Communications on Pure & Applied Analysis, 2011, 10 (3) : 817-830. doi: 10.3934/cpaa.2011.10.817 [17] Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807 [18] Boris Buffoni, Laurent Landry. Multiplicity of homoclinic orbits in quasi-linear autonomous Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 75-116. doi: 10.3934/dcds.2010.27.75 [19] Daniel Wilczak. Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1039-1055. doi: 10.3934/dcdsb.2009.11.1039 [20] Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

Impact Factor: