-
Previous Article
On the consistency of ensemble transform filter formulations
- JCD Home
- This Issue
- Next Article
Modularity revisited: A novel dynamics-based concept for decomposing complex networks
1. | Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany, Germany, Germany, Germany, Germany |
References:
[1] |
A. H. Al-Mohy and N. J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators,, SIAM J. Sci. Comput., 33 (2011), 488.
doi: 10.1137/100788860. |
[2] |
R. Albert and A. Barabasi, Statistical mechanics of complex networks,, Rev. Mod. Phys., 74 (2002), 47.
doi: 10.1103/RevModPhys.74.47. |
[3] |
D. Aldous and J. Fill, Reversible Markov Chains and Random Walks on Graphs,, University of California, (2002). |
[4] |
M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation,, Neural Computation, 6 (2003), 1373.
doi: 10.1162/089976603321780317. |
[5] |
G. Cho and C. Meyer, Aggregation/Disaggregation Methods for Nearly Uncoupled MArkov Chains,, Technical Report NCSU no. 041600-0400, (0416), 041600. |
[6] |
M. Dellnitz and R. Preis, Congestion and almost invariant sets in dynamical systems,, in Proceedings of the 2nd international conference on Symbolic and numerical scientific computation, (2003), 183.
doi: 10.1007/3-540-45084-X_8. |
[7] |
P. Deuflhard, W. Huisinga, A. Fischer and C. Schuette, Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains,, Linear Algebra and its Applications, 315 (2000), 39.
doi: 10.1016/S0024-3795(00)00095-1. |
[8] |
P. Deuflhard and M. Weber, Robust Perron cluster analysis in conformation dynamics,, Linear Algebra and its Applications, 398 (2005), 161.
doi: 10.1016/j.laa.2004.10.026. |
[9] |
N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schuette, Random walks on complex modular networks,, Journal of Numerical Analysis, (). |
[10] |
N. Djurdjevac, M. Sarich and C. Schuette, On Markov state models for metastable processes,, Proceeding of the ICM 2010, (2010), 3105.
doi: 10.1142/9789814324359_0182. |
[11] |
N. Djurdjevac, M. Sarich and C. Schütte, Estimating the eigenvalue error of markov state models,, Multiscale Modeling & Simulation, 10 (2012), 61.
doi: 10.1137/100798910. |
[12] |
P. Doyle and J. Snell, Random Walks and Electric Networks,, Carus Mathematical Monographs, (1984).
|
[13] |
W. E and E. Vanden-Eijnden, Transition-path theory and path-finding algorithms for the study of rare events,, Annual Review of Physical Chemistry, 61 (2010), 391.
doi: 10.1146/annurev.physchem.040808.090412. |
[14] |
S. Fortunato, Community detection in graphs,, Physics Reports, 486 (2010), 75.
doi: 10.1016/j.physrep.2009.11.002. |
[15] |
P. Garrido and J. Marro (eds.), Exploring Complex Graphs by Random Walks, vol. 661,, American Institute of Physics, (2002). |
[16] |
M. Girvan and M. E. J. Newman, Community structure in social and biological networks,, Proceedings of the National Academy of Sciences, 99 (2002), 7821.
doi: 10.1073/pnas.122653799. |
[17] |
W. Huisinga and B. Schmidt, Metastability and dominant eigenvalues of transfer operators,, in New Algorithms for Macromolecular Simulation (eds. B. Leimkuhler, (2006), 167.
doi: 10.1007/3-540-31618-3_11. |
[18] |
H. Jeong, B. Tombor, R. Albert, Z. Oltvai and A. Barabasi, The large-scale organization of metabolic networks,, Nature, 407 (2000), 651. |
[19] |
S. Lafon and A. Lee, Diffusion maps and coarse-graining: A unified framework for dimensionality reduction,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (2006), 1393.
doi: 10.1109/TPAMI.2006.184. |
[20] |
T. Li, W. E and E. V. Eijnden, Optimal partition and effective dynamics of complex networks,, Proc. Nat. Acad. Sci., 105 (). |
[21] |
T. Li, J. Liu and W. E, A probabilistic framework for network partition,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.026106. |
[22] |
L. Lovasz, Random walks on graphs: A survey.,, Bolyayi Society Mathematical Studies, 2 (1996), 353.
|
[23] |
U. Luxburg, A tutorial on spectral clustering,, Statistics and Computing, 17 (2007), 395.
doi: 10.1007/s11222-007-9033-z. |
[24] |
I. Marek and P. Mayer, Aggregation/disaggregation iterative methods applied to Leontev and Markov chain models,, Appl. Math., 47 (2002), 139.
doi: 10.1023/A:1021785102298. |
[25] |
R. Mattingly, A revised stochastic complementation algorithm for nearly completely decomposable Markov chains,, ORSA Journal on Computing, 7 (1995), 117.
doi: 10.1287/ijoc.7.2.117. |
[26] |
E. Meerbach, C. Schuette and A. Fischer, Eigenvalue bounds on restrictions of reversible nearly uncoupled Markov chains,, Lin. Alg. Appl., 398 (2005), 141.
doi: 10.1016/j.laa.2004.10.018. |
[27] |
M. Meila and J. Shi, A random walks view of spectral segmentation,, AI and Statistics (AISTATS)., (). |
[28] |
P. Metzner, C. Schuette and E. Vanden-Eijnden, Transition path theory for Markov jump processes,, Multiscale Modeling and Simulation, 7 (2009), 1192.
doi: 10.1137/070699500. |
[29] |
C. D. Meyer, Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems,, SIAM Rev, 31 (1989), 240.
doi: 10.1137/1031050. |
[30] |
M. C. V. Nascimento and A. C. P. L. F. De Carvalho, Spectral methods for graph clustering: A survey,, European Journal Of Operational Research, 211 (2011), 221.
doi: 10.1016/j.ejor.2010.08.012. |
[31] |
M. E. J. Newman, Finding community structure in networks using the eigenvectors of matrices,, PHYS.REV.E, 74 (2006).
doi: 10.1103/PhysRevE.74.036104. |
[32] |
M. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.
doi: 10.1137/S003614450342480. |
[33] |
M. Newman, A. Barabasi and D. Watts, The Structure and Dynamics of Networks,, Princeton Univ Press, (2006).
|
[34] |
M. Newman and M. Girvan, Finding and evaluating community structure in networks,, Phys. Rev. E, 69 (2004).
doi: 10.1103/PhysRevE.69.026113. |
[35] |
V. Nicosia, G. Mangioni, V. Carchiolo and M. Malgeri, Extending the definition of modularity to directed graphs with overlapping communities,, Journal of Statistical Mechanics: Theory and Experiment, 2009 (2009).
doi: 10.1088/1742-5468/2009/03/P03024. |
[36] |
J. Noh and H. Rieger, Random walks on complex networks,, Phys. Rev. Lett., 92 (2004).
doi: 10.1103/PhysRevLett.92.118701. |
[37] |
G. Palla, I. Derenyi, I. Farkas and T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society,, Nature, 435 (2005), 814.
doi: 10.1038/nature03607. |
[38] |
M. A. Porter, J.-P. Onnela and P. J. Mucha, Communities in networks,, World Wide Web Internet And Web Information Systems, 56 (2009), 1082.
|
[39] |
J. Reichardt and S. Bornholdt, Statistical mechanics of community detection,, PHYS.REV.E, 74 (2006).
doi: 10.1103/PhysRevE.74.016110. |
[40] |
M. Rosvall and C. Bergstrom, Maps of random walks on complex networks reveal community structure,, Proc Natl Acad Sci, 105 (2008), 1118.
doi: 10.1073/pnas.0706851105. |
[41] |
F. Santo, Community detection in graphs,, Physics Reports, 486 (2010), 75.
doi: 10.1016/j.physrep.2009.11.002. |
[42] |
M. Sarich and C. Schuette, Approximating selected non-dominant timescales by markov state models,, Comm Math Sci., 10 (2012), 1001.
doi: 10.4310/CMS.2012.v10.n3.a14. |
[43] |
M. Sarich, C. Schuette and E. Vanden-Eijnden, Optimal fuzzy aggregation of networks,, Multiscale Modeling and Simulation, 8 (2010), 1535.
doi: 10.1137/090758519. |
[44] |
M. Sarich, Projected Transfer Operators,, PhD thesis, (2011). |
[45] |
C. Schuette and W. Huisinga, Biomolecular conformations can be identified as metastable sets of molecular dynamics,, in Handbook of Numerical Analysis, X (2003), 699.
|
[46] |
C. Schuette, F. Noe, J. Lu, M. Sarich and E. Vanden-Eijnden, State models based on milestoning,, J. Chem. Phys, 134 (2011).
doi: 10.1063/1.3590108. |
[47] |
S. Van Dongen, Graph Clustering by Flow Simulation,, PhD thesis, (2000). |
show all references
References:
[1] |
A. H. Al-Mohy and N. J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators,, SIAM J. Sci. Comput., 33 (2011), 488.
doi: 10.1137/100788860. |
[2] |
R. Albert and A. Barabasi, Statistical mechanics of complex networks,, Rev. Mod. Phys., 74 (2002), 47.
doi: 10.1103/RevModPhys.74.47. |
[3] |
D. Aldous and J. Fill, Reversible Markov Chains and Random Walks on Graphs,, University of California, (2002). |
[4] |
M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation,, Neural Computation, 6 (2003), 1373.
doi: 10.1162/089976603321780317. |
[5] |
G. Cho and C. Meyer, Aggregation/Disaggregation Methods for Nearly Uncoupled MArkov Chains,, Technical Report NCSU no. 041600-0400, (0416), 041600. |
[6] |
M. Dellnitz and R. Preis, Congestion and almost invariant sets in dynamical systems,, in Proceedings of the 2nd international conference on Symbolic and numerical scientific computation, (2003), 183.
doi: 10.1007/3-540-45084-X_8. |
[7] |
P. Deuflhard, W. Huisinga, A. Fischer and C. Schuette, Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains,, Linear Algebra and its Applications, 315 (2000), 39.
doi: 10.1016/S0024-3795(00)00095-1. |
[8] |
P. Deuflhard and M. Weber, Robust Perron cluster analysis in conformation dynamics,, Linear Algebra and its Applications, 398 (2005), 161.
doi: 10.1016/j.laa.2004.10.026. |
[9] |
N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schuette, Random walks on complex modular networks,, Journal of Numerical Analysis, (). |
[10] |
N. Djurdjevac, M. Sarich and C. Schuette, On Markov state models for metastable processes,, Proceeding of the ICM 2010, (2010), 3105.
doi: 10.1142/9789814324359_0182. |
[11] |
N. Djurdjevac, M. Sarich and C. Schütte, Estimating the eigenvalue error of markov state models,, Multiscale Modeling & Simulation, 10 (2012), 61.
doi: 10.1137/100798910. |
[12] |
P. Doyle and J. Snell, Random Walks and Electric Networks,, Carus Mathematical Monographs, (1984).
|
[13] |
W. E and E. Vanden-Eijnden, Transition-path theory and path-finding algorithms for the study of rare events,, Annual Review of Physical Chemistry, 61 (2010), 391.
doi: 10.1146/annurev.physchem.040808.090412. |
[14] |
S. Fortunato, Community detection in graphs,, Physics Reports, 486 (2010), 75.
doi: 10.1016/j.physrep.2009.11.002. |
[15] |
P. Garrido and J. Marro (eds.), Exploring Complex Graphs by Random Walks, vol. 661,, American Institute of Physics, (2002). |
[16] |
M. Girvan and M. E. J. Newman, Community structure in social and biological networks,, Proceedings of the National Academy of Sciences, 99 (2002), 7821.
doi: 10.1073/pnas.122653799. |
[17] |
W. Huisinga and B. Schmidt, Metastability and dominant eigenvalues of transfer operators,, in New Algorithms for Macromolecular Simulation (eds. B. Leimkuhler, (2006), 167.
doi: 10.1007/3-540-31618-3_11. |
[18] |
H. Jeong, B. Tombor, R. Albert, Z. Oltvai and A. Barabasi, The large-scale organization of metabolic networks,, Nature, 407 (2000), 651. |
[19] |
S. Lafon and A. Lee, Diffusion maps and coarse-graining: A unified framework for dimensionality reduction,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (2006), 1393.
doi: 10.1109/TPAMI.2006.184. |
[20] |
T. Li, W. E and E. V. Eijnden, Optimal partition and effective dynamics of complex networks,, Proc. Nat. Acad. Sci., 105 (). |
[21] |
T. Li, J. Liu and W. E, A probabilistic framework for network partition,, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.026106. |
[22] |
L. Lovasz, Random walks on graphs: A survey.,, Bolyayi Society Mathematical Studies, 2 (1996), 353.
|
[23] |
U. Luxburg, A tutorial on spectral clustering,, Statistics and Computing, 17 (2007), 395.
doi: 10.1007/s11222-007-9033-z. |
[24] |
I. Marek and P. Mayer, Aggregation/disaggregation iterative methods applied to Leontev and Markov chain models,, Appl. Math., 47 (2002), 139.
doi: 10.1023/A:1021785102298. |
[25] |
R. Mattingly, A revised stochastic complementation algorithm for nearly completely decomposable Markov chains,, ORSA Journal on Computing, 7 (1995), 117.
doi: 10.1287/ijoc.7.2.117. |
[26] |
E. Meerbach, C. Schuette and A. Fischer, Eigenvalue bounds on restrictions of reversible nearly uncoupled Markov chains,, Lin. Alg. Appl., 398 (2005), 141.
doi: 10.1016/j.laa.2004.10.018. |
[27] |
M. Meila and J. Shi, A random walks view of spectral segmentation,, AI and Statistics (AISTATS)., (). |
[28] |
P. Metzner, C. Schuette and E. Vanden-Eijnden, Transition path theory for Markov jump processes,, Multiscale Modeling and Simulation, 7 (2009), 1192.
doi: 10.1137/070699500. |
[29] |
C. D. Meyer, Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems,, SIAM Rev, 31 (1989), 240.
doi: 10.1137/1031050. |
[30] |
M. C. V. Nascimento and A. C. P. L. F. De Carvalho, Spectral methods for graph clustering: A survey,, European Journal Of Operational Research, 211 (2011), 221.
doi: 10.1016/j.ejor.2010.08.012. |
[31] |
M. E. J. Newman, Finding community structure in networks using the eigenvectors of matrices,, PHYS.REV.E, 74 (2006).
doi: 10.1103/PhysRevE.74.036104. |
[32] |
M. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.
doi: 10.1137/S003614450342480. |
[33] |
M. Newman, A. Barabasi and D. Watts, The Structure and Dynamics of Networks,, Princeton Univ Press, (2006).
|
[34] |
M. Newman and M. Girvan, Finding and evaluating community structure in networks,, Phys. Rev. E, 69 (2004).
doi: 10.1103/PhysRevE.69.026113. |
[35] |
V. Nicosia, G. Mangioni, V. Carchiolo and M. Malgeri, Extending the definition of modularity to directed graphs with overlapping communities,, Journal of Statistical Mechanics: Theory and Experiment, 2009 (2009).
doi: 10.1088/1742-5468/2009/03/P03024. |
[36] |
J. Noh and H. Rieger, Random walks on complex networks,, Phys. Rev. Lett., 92 (2004).
doi: 10.1103/PhysRevLett.92.118701. |
[37] |
G. Palla, I. Derenyi, I. Farkas and T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society,, Nature, 435 (2005), 814.
doi: 10.1038/nature03607. |
[38] |
M. A. Porter, J.-P. Onnela and P. J. Mucha, Communities in networks,, World Wide Web Internet And Web Information Systems, 56 (2009), 1082.
|
[39] |
J. Reichardt and S. Bornholdt, Statistical mechanics of community detection,, PHYS.REV.E, 74 (2006).
doi: 10.1103/PhysRevE.74.016110. |
[40] |
M. Rosvall and C. Bergstrom, Maps of random walks on complex networks reveal community structure,, Proc Natl Acad Sci, 105 (2008), 1118.
doi: 10.1073/pnas.0706851105. |
[41] |
F. Santo, Community detection in graphs,, Physics Reports, 486 (2010), 75.
doi: 10.1016/j.physrep.2009.11.002. |
[42] |
M. Sarich and C. Schuette, Approximating selected non-dominant timescales by markov state models,, Comm Math Sci., 10 (2012), 1001.
doi: 10.4310/CMS.2012.v10.n3.a14. |
[43] |
M. Sarich, C. Schuette and E. Vanden-Eijnden, Optimal fuzzy aggregation of networks,, Multiscale Modeling and Simulation, 8 (2010), 1535.
doi: 10.1137/090758519. |
[44] |
M. Sarich, Projected Transfer Operators,, PhD thesis, (2011). |
[45] |
C. Schuette and W. Huisinga, Biomolecular conformations can be identified as metastable sets of molecular dynamics,, in Handbook of Numerical Analysis, X (2003), 699.
|
[46] |
C. Schuette, F. Noe, J. Lu, M. Sarich and E. Vanden-Eijnden, State models based on milestoning,, J. Chem. Phys, 134 (2011).
doi: 10.1063/1.3590108. |
[47] |
S. Van Dongen, Graph Clustering by Flow Simulation,, PhD thesis, (2000). |
[1] |
Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517 |
[2] |
Nataša Djurdjevac Conrad, Ralf Banisch, Christof Schütte. Modularity of directed networks: Cycle decomposition approach. Journal of Computational Dynamics, 2015, 2 (1) : 1-24. doi: 10.3934/jcd.2015.2.1 |
[3] |
Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058 |
[4] |
Edward Belbruno. Random walk in the three-body problem and applications. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519 |
[5] |
Kumiko Hattori, Noriaki Ogo, Takafumi Otsuka. A family of self-avoiding random walks interpolating the loop-erased random walk and a self-avoiding walk on the Sierpiński gasket. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 289-311. doi: 10.3934/dcdss.2017014 |
[6] |
Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295 |
[7] |
E. Kapsza, Gy. Károlyi, S. Kovács, G. Domokos. Regular and random patterns in complex bifurcation diagrams. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 519-540. doi: 10.3934/dcdsb.2003.3.519 |
[8] |
Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393 |
[9] |
Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks & Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441 |
[10] |
F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 49-55. doi: 10.3934/mbe.2004.1.49 |
[11] |
Chol-Ung Choe, Thomas Dahms, Philipp Hövel, Eckehard Schöll. Control of synchrony by delay coupling in complex networks. Conference Publications, 2011, 2011 (Special) : 292-301. doi: 10.3934/proc.2011.2011.292 |
[12] |
Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial & Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87 |
[13] |
Simone Göttlich, Stephan Martin, Thorsten Sickenberger. Time-continuous production networks with random breakdowns. Networks & Heterogeneous Media, 2011, 6 (4) : 695-714. doi: 10.3934/nhm.2011.6.695 |
[14] |
Massimiliano Zanin, Ernestina Menasalvas, Pedro A. C. Sousa, Stefano Boccaletti. Preprocessing and analyzing genetic data with complex networks: An application to Obstructive Nephropathy. Networks & Heterogeneous Media, 2012, 7 (3) : 473-481. doi: 10.3934/nhm.2012.7.473 |
[15] |
Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001 |
[16] |
Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393 |
[17] |
Regino Criado, Rosa M. Benito, Miguel Romance, Juan C. Losada. Preface: Mesoscales and evolution in complex networks: Applications and related topics. Networks & Heterogeneous Media, 2012, 7 (3) : i-iii. doi: 10.3934/nhm.2012.7.3i |
[18] |
Raoul-Martin Memmesheimer, Marc Timme. Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1555-1588. doi: 10.3934/dcds.2010.28.1555 |
[19] |
Suoqin Jin, Fang-Xiang Wu, Xiufen Zou. Domain control of nonlinear networked systems and applications to complex disease networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2169-2206. doi: 10.3934/dcdsb.2017091 |
[20] |
Junyuan Yang, Yuming Chen, Jiming Liu. Stability analysis of a two-strain epidemic model on complex networks with latency. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2851-2866. doi: 10.3934/dcdsb.2016076 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]