-
Previous Article
Asymptotic pattern of a migratory and nonmonotone population model
- DCDS-B Home
- This Issue
-
Next Article
Multistability and localized attractors in a dissipative discrete NLS equation
Persistence in some periodic epidemic models with infection age or constant periods of infection
1. | Centro de Matemática e Aplicações Fundamentais, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal, Portugal |
2. | IRD and University Paris 6, Research group UMMISCO, Bondy, France |
References:
[1] |
Kluwer, Dordrecht, 2000. |
[2] |
Bull. Math. Biol., 69 (2007), 1067-1091.
doi: 10.1007/s11538-006-9166-9. |
[3] |
J. Math. Biol., 62 (2011), 741-762.
doi: 10.1007/s00285-010-0354-8. |
[4] |
J. Math. Biol., 53 (2006), 421-436.
doi: 10.1007/s00285-006-0015-0. |
[5] |
Math. Biosci., 210 (2007), 647-658.
doi: 10.1016/j.mbs.2007.07.005. |
[6] |
SIAM J. Appl. Math., 53 (1993), 1447-1479.
doi: 10.1137/0153068. |
[7] |
Math. Biosci., 31 (1976), 87-104.
doi: 10.1016/0025-5564(76)90042-0. |
[8] |
J. Math. Anal. Appl., 338 (2008), 101-110.
doi: 10.1016/j.jmaa.2007.05.011. |
[9] |
Comment. Math. Univ. Carolinae, 41 (2000), 459-467. |
[10] |
Proc. Amer. Math. Soc., 104 (1988), 111-116.
doi: 10.1090/S0002-9939-1988-0958053-2. |
[11] |
J. Dynam. Differ. Equat., 18 (2006), 485-523.
doi: 10.1007/s10884-006-9021-6. |
[12] |
American Mathematical Society, Providence RI, 1988. |
[13] |
Acta Applicandae Math., 14 (1989), 11-22.
doi: 10.1007/BF00046670. |
[14] |
Proc. Amer. Math. Soc., 107 (1989), 1137-1142.
doi: 10.1090/S0002-9939-1989-0984816-4. |
[15] |
Springer, Berlin, 1995. |
[16] |
Electron. J. Differ. Equat., 65 (2001), 1-35. |
[17] |
Applic. Anal., 89 (2010), 1109-1140.
doi: 10.1080/00036810903208122. |
[18] |
in Nonlinear systems and applications (ed. V. Lakshmikantham), Academic Press, New York, (1977), 235-257. |
[19] |
SIAM J. Math. Anal., 9 (1978), 356-376.
doi: 10.1137/0509024. |
[20] |
J. Math. Biol., 64 (2012), 933-949.
doi: 10.1007/s00285-011-0440-6. |
[21] |
J. Math. Biol., 4 (1977), 69-80.
doi: 10.1007/BF00276353. |
[22] |
Springer, Berlin, 2011.
doi: 10.1007/978-1-4419-7646-8. |
[23] |
American Mathematical Society, Providence RI, 2011. |
[24] |
SIAM J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870. |
[25] |
J. Integral Equat., 7 (1984), 253-277. |
[26] |
Marcel Dekker, New York, 1985. |
[27] |
Proc. Nat. Acad. Sci., 102 (2005), 13343-13348.
doi: 10.1073/pnas.0504053102. |
[28] |
J. Math. Anal. Appl., 325 (2007), 496-516.
doi: 10.1016/j.jmaa.2006.01.085. |
show all references
References:
[1] |
Kluwer, Dordrecht, 2000. |
[2] |
Bull. Math. Biol., 69 (2007), 1067-1091.
doi: 10.1007/s11538-006-9166-9. |
[3] |
J. Math. Biol., 62 (2011), 741-762.
doi: 10.1007/s00285-010-0354-8. |
[4] |
J. Math. Biol., 53 (2006), 421-436.
doi: 10.1007/s00285-006-0015-0. |
[5] |
Math. Biosci., 210 (2007), 647-658.
doi: 10.1016/j.mbs.2007.07.005. |
[6] |
SIAM J. Appl. Math., 53 (1993), 1447-1479.
doi: 10.1137/0153068. |
[7] |
Math. Biosci., 31 (1976), 87-104.
doi: 10.1016/0025-5564(76)90042-0. |
[8] |
J. Math. Anal. Appl., 338 (2008), 101-110.
doi: 10.1016/j.jmaa.2007.05.011. |
[9] |
Comment. Math. Univ. Carolinae, 41 (2000), 459-467. |
[10] |
Proc. Amer. Math. Soc., 104 (1988), 111-116.
doi: 10.1090/S0002-9939-1988-0958053-2. |
[11] |
J. Dynam. Differ. Equat., 18 (2006), 485-523.
doi: 10.1007/s10884-006-9021-6. |
[12] |
American Mathematical Society, Providence RI, 1988. |
[13] |
Acta Applicandae Math., 14 (1989), 11-22.
doi: 10.1007/BF00046670. |
[14] |
Proc. Amer. Math. Soc., 107 (1989), 1137-1142.
doi: 10.1090/S0002-9939-1989-0984816-4. |
[15] |
Springer, Berlin, 1995. |
[16] |
Electron. J. Differ. Equat., 65 (2001), 1-35. |
[17] |
Applic. Anal., 89 (2010), 1109-1140.
doi: 10.1080/00036810903208122. |
[18] |
in Nonlinear systems and applications (ed. V. Lakshmikantham), Academic Press, New York, (1977), 235-257. |
[19] |
SIAM J. Math. Anal., 9 (1978), 356-376.
doi: 10.1137/0509024. |
[20] |
J. Math. Biol., 64 (2012), 933-949.
doi: 10.1007/s00285-011-0440-6. |
[21] |
J. Math. Biol., 4 (1977), 69-80.
doi: 10.1007/BF00276353. |
[22] |
Springer, Berlin, 2011.
doi: 10.1007/978-1-4419-7646-8. |
[23] |
American Mathematical Society, Providence RI, 2011. |
[24] |
SIAM J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870. |
[25] |
J. Integral Equat., 7 (1984), 253-277. |
[26] |
Marcel Dekker, New York, 1985. |
[27] |
Proc. Nat. Acad. Sci., 102 (2005), 13343-13348.
doi: 10.1073/pnas.0504053102. |
[28] |
J. Math. Anal. Appl., 325 (2007), 496-516.
doi: 10.1016/j.jmaa.2006.01.085. |
[1] |
Rafael Obaya, Ana M. Sanz. Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3947-3970. doi: 10.3934/dcdsb.2018338 |
[2] |
Gergely Röst, Jianhong Wu. SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2008, 5 (2) : 389-402. doi: 10.3934/mbe.2008.5.389 |
[3] |
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013 |
[4] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[5] |
P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220 |
[6] |
Jacek Banasiak, Eddy Kimba Phongi. Canard-type solutions in epidemiological models. Conference Publications, 2015, 2015 (special) : 85-93. doi: 10.3934/proc.2015.0085 |
[7] |
Vincent Giovangigli. Persistence of Boltzmann entropy in fluid models. Discrete & Continuous Dynamical Systems, 2009, 24 (1) : 95-114. doi: 10.3934/dcds.2009.24.95 |
[8] |
Dan Stanescu, Benito Chen-Charpentier. Random coefficient differential equation models for Monod kinetics. Conference Publications, 2009, 2009 (Special) : 719-728. doi: 10.3934/proc.2009.2009.719 |
[9] |
C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603-610. doi: 10.3934/mbe.2009.6.603 |
[10] |
Guihong Fan, Yijun Lou, Horst R. Thieme, Jianhong Wu. Stability and persistence in ODE models for populations with many stages. Mathematical Biosciences & Engineering, 2015, 12 (4) : 661-686. doi: 10.3934/mbe.2015.12.661 |
[11] |
Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369 |
[12] |
Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259 |
[13] |
Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683 |
[14] |
Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663 |
[15] |
Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689 |
[16] |
A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701 |
[17] |
Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268 |
[18] |
Mustapha Ait Rami, Vahid S. Bokharaie, Oliver Mason, Fabian R. Wirth. Stability criteria for SIS epidemiological models under switching policies. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2865-2887. doi: 10.3934/dcdsb.2014.19.2865 |
[19] |
Yu Yang, Dongmei Xiao. Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 195-211. doi: 10.3934/dcdsb.2010.13.195 |
[20] |
Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]