June  2014, 19(4): 1155-1170. doi: 10.3934/dcdsb.2014.19.1155

Persistence in some periodic epidemic models with infection age or constant periods of infection

1. 

Centro de Matemática e Aplicações Fundamentais, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal, Portugal

2. 

IRD and University Paris 6, Research group UMMISCO, Bondy, France

Received  June 2013 Revised  February 2014 Published  April 2014

Much recent work has focused on persistence for epidemic models with periodic coefficients. But the case where the infected compartments satisfy a delay differential equation or a partial differential equation does not seem to have been considered so far. The purpose of this paper is to provide a framework for proving persistence in such a case. Some examples are presented, such as a periodic SIR model structured by time since infection and a periodic SIS delay model.
Citation: Carlota Rebelo, Alessandro Margheri, Nicolas Bacaër. Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1155-1170. doi: 10.3934/dcdsb.2014.19.1155
References:
[1]

Kluwer, Dordrecht, 2000.  Google Scholar

[2]

Bull. Math. Biol., 69 (2007), 1067-1091. doi: 10.1007/s11538-006-9166-9.  Google Scholar

[3]

J. Math. Biol., 62 (2011), 741-762. doi: 10.1007/s00285-010-0354-8.  Google Scholar

[4]

J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0.  Google Scholar

[5]

Math. Biosci., 210 (2007), 647-658. doi: 10.1016/j.mbs.2007.07.005.  Google Scholar

[6]

SIAM J. Appl. Math., 53 (1993), 1447-1479. doi: 10.1137/0153068.  Google Scholar

[7]

Math. Biosci., 31 (1976), 87-104. doi: 10.1016/0025-5564(76)90042-0.  Google Scholar

[8]

J. Math. Anal. Appl., 338 (2008), 101-110. doi: 10.1016/j.jmaa.2007.05.011.  Google Scholar

[9]

Comment. Math. Univ. Carolinae, 41 (2000), 459-467.  Google Scholar

[10]

Proc. Amer. Math. Soc., 104 (1988), 111-116. doi: 10.1090/S0002-9939-1988-0958053-2.  Google Scholar

[11]

J. Dynam. Differ. Equat., 18 (2006), 485-523. doi: 10.1007/s10884-006-9021-6.  Google Scholar

[12]

American Mathematical Society, Providence RI, 1988.  Google Scholar

[13]

Acta Applicandae Math., 14 (1989), 11-22. doi: 10.1007/BF00046670.  Google Scholar

[14]

Proc. Amer. Math. Soc., 107 (1989), 1137-1142. doi: 10.1090/S0002-9939-1989-0984816-4.  Google Scholar

[15]

Springer, Berlin, 1995.  Google Scholar

[16]

Electron. J. Differ. Equat., 65 (2001), 1-35.  Google Scholar

[17]

Applic. Anal., 89 (2010), 1109-1140. doi: 10.1080/00036810903208122.  Google Scholar

[18]

in Nonlinear systems and applications (ed. V. Lakshmikantham), Academic Press, New York, (1977), 235-257.  Google Scholar

[19]

SIAM J. Math. Anal., 9 (1978), 356-376. doi: 10.1137/0509024.  Google Scholar

[20]

J. Math. Biol., 64 (2012), 933-949. doi: 10.1007/s00285-011-0440-6.  Google Scholar

[21]

J. Math. Biol., 4 (1977), 69-80. doi: 10.1007/BF00276353.  Google Scholar

[22]

Springer, Berlin, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[23]

American Mathematical Society, Providence RI, 2011.  Google Scholar

[24]

SIAM J. Appl. Math., 70 (2009), 188-211. doi: 10.1137/080732870.  Google Scholar

[25]

J. Integral Equat., 7 (1984), 253-277.  Google Scholar

[26]

Marcel Dekker, New York, 1985.  Google Scholar

[27]

Proc. Nat. Acad. Sci., 102 (2005), 13343-13348. doi: 10.1073/pnas.0504053102.  Google Scholar

[28]

J. Math. Anal. Appl., 325 (2007), 496-516. doi: 10.1016/j.jmaa.2006.01.085.  Google Scholar

show all references

References:
[1]

Kluwer, Dordrecht, 2000.  Google Scholar

[2]

Bull. Math. Biol., 69 (2007), 1067-1091. doi: 10.1007/s11538-006-9166-9.  Google Scholar

[3]

J. Math. Biol., 62 (2011), 741-762. doi: 10.1007/s00285-010-0354-8.  Google Scholar

[4]

J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0.  Google Scholar

[5]

Math. Biosci., 210 (2007), 647-658. doi: 10.1016/j.mbs.2007.07.005.  Google Scholar

[6]

SIAM J. Appl. Math., 53 (1993), 1447-1479. doi: 10.1137/0153068.  Google Scholar

[7]

Math. Biosci., 31 (1976), 87-104. doi: 10.1016/0025-5564(76)90042-0.  Google Scholar

[8]

J. Math. Anal. Appl., 338 (2008), 101-110. doi: 10.1016/j.jmaa.2007.05.011.  Google Scholar

[9]

Comment. Math. Univ. Carolinae, 41 (2000), 459-467.  Google Scholar

[10]

Proc. Amer. Math. Soc., 104 (1988), 111-116. doi: 10.1090/S0002-9939-1988-0958053-2.  Google Scholar

[11]

J. Dynam. Differ. Equat., 18 (2006), 485-523. doi: 10.1007/s10884-006-9021-6.  Google Scholar

[12]

American Mathematical Society, Providence RI, 1988.  Google Scholar

[13]

Acta Applicandae Math., 14 (1989), 11-22. doi: 10.1007/BF00046670.  Google Scholar

[14]

Proc. Amer. Math. Soc., 107 (1989), 1137-1142. doi: 10.1090/S0002-9939-1989-0984816-4.  Google Scholar

[15]

Springer, Berlin, 1995.  Google Scholar

[16]

Electron. J. Differ. Equat., 65 (2001), 1-35.  Google Scholar

[17]

Applic. Anal., 89 (2010), 1109-1140. doi: 10.1080/00036810903208122.  Google Scholar

[18]

in Nonlinear systems and applications (ed. V. Lakshmikantham), Academic Press, New York, (1977), 235-257.  Google Scholar

[19]

SIAM J. Math. Anal., 9 (1978), 356-376. doi: 10.1137/0509024.  Google Scholar

[20]

J. Math. Biol., 64 (2012), 933-949. doi: 10.1007/s00285-011-0440-6.  Google Scholar

[21]

J. Math. Biol., 4 (1977), 69-80. doi: 10.1007/BF00276353.  Google Scholar

[22]

Springer, Berlin, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[23]

American Mathematical Society, Providence RI, 2011.  Google Scholar

[24]

SIAM J. Appl. Math., 70 (2009), 188-211. doi: 10.1137/080732870.  Google Scholar

[25]

J. Integral Equat., 7 (1984), 253-277.  Google Scholar

[26]

Marcel Dekker, New York, 1985.  Google Scholar

[27]

Proc. Nat. Acad. Sci., 102 (2005), 13343-13348. doi: 10.1073/pnas.0504053102.  Google Scholar

[28]

J. Math. Anal. Appl., 325 (2007), 496-516. doi: 10.1016/j.jmaa.2006.01.085.  Google Scholar

[1]

Rafael Obaya, Ana M. Sanz. Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3947-3970. doi: 10.3934/dcdsb.2018338

[2]

Gergely Röst, Jianhong Wu. SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2008, 5 (2) : 389-402. doi: 10.3934/mbe.2008.5.389

[3]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[4]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[5]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[6]

Jacek Banasiak, Eddy Kimba Phongi. Canard-type solutions in epidemiological models. Conference Publications, 2015, 2015 (special) : 85-93. doi: 10.3934/proc.2015.0085

[7]

Vincent Giovangigli. Persistence of Boltzmann entropy in fluid models. Discrete & Continuous Dynamical Systems, 2009, 24 (1) : 95-114. doi: 10.3934/dcds.2009.24.95

[8]

Dan Stanescu, Benito Chen-Charpentier. Random coefficient differential equation models for Monod kinetics. Conference Publications, 2009, 2009 (Special) : 719-728. doi: 10.3934/proc.2009.2009.719

[9]

C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603-610. doi: 10.3934/mbe.2009.6.603

[10]

Guihong Fan, Yijun Lou, Horst R. Thieme, Jianhong Wu. Stability and persistence in ODE models for populations with many stages. Mathematical Biosciences & Engineering, 2015, 12 (4) : 661-686. doi: 10.3934/mbe.2015.12.661

[11]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[12]

Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259

[13]

Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

[14]

Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663

[15]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[16]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[17]

Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268

[18]

Mustapha Ait Rami, Vahid S. Bokharaie, Oliver Mason, Fabian R. Wirth. Stability criteria for SIS epidemiological models under switching policies. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2865-2887. doi: 10.3934/dcdsb.2014.19.2865

[19]

Yu Yang, Dongmei Xiao. Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 195-211. doi: 10.3934/dcdsb.2010.13.195

[20]

Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (8)

[Back to Top]