-
Previous Article
Blow-up set for a superlinear heat equation and pointedness of the initial data
- DCDS Home
- This Issue
-
Next Article
Delay-dependent stability criteria for neutral delay differential and difference equations
Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations
1. | Laboratoire de Mathématiques et d'Informatique (LMI), INSA de Rouen, Avenue de l'Université, 76 801 Saint Etienne du Rouvray Cedex, France |
2. | Kepler Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65-417, Zielona Góra, Poland |
References:
[1] |
M. Audin, Les Systèmes Hamiltoniens et Leur Intégrabilité,, Cours Spécialisés 8, (2001).
|
[2] |
A. Baider, R. C. Churchill, D. L. Rod and M. F. Singer, On the infinitesimal geometry of integrable systems,, in Mechanics Day (Waterloo, (1992), 5.
|
[3] |
G. Casale, Morales-Ramis theorems via Malgrange pseudogroup,, Annales de l'Institut Fourier, 59 (2009), 2593.
doi: 10.5802/aif.2501. |
[4] |
G. Duval and A. J. Maciejewski, Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials,, Annales de l'Institut Fourier, 59 (2009), 2839.
doi: 10.5802/aif.2510. |
[5] |
N. V. Grigorenko, Abelian extensions in Picard-Vessiot theory,, Mat. Zametki, 17 (1975), 113.
|
[6] |
J. E. Humphreys, Linear Algebraic Groups,, Graduate Texts in Mathematics, (1975).
|
[7] |
E. R. Kolchin, Algebraic groups and algebraic dependence,, Amer. J. Math., 90 (1968), 1151.
doi: 10.2307/2373294. |
[8] |
A. J. Maciejewski and M. Przybylska, Differential Galois theory and integrability,, Internat. J. Geom. Methods in Modern Phys., 6 (2009), 1357.
doi: 10.1142/S0219887809004272. |
[9] |
J. J. Morales-Ruiz and J.-P. Ramis, Integrability of dynamical systems through differential Galois theory: A practical guide,, in Differential algebra, 509 (2010), 143.
doi: 10.1090/conm/509/09980. |
[10] |
J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Ann. Sci. Éc. Norm. Supér, 40 (2007), 845.
doi: 10.1016/j.ansens.2007.09.002. |
[11] |
M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations, vol. 328 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (2003).
|
show all references
References:
[1] |
M. Audin, Les Systèmes Hamiltoniens et Leur Intégrabilité,, Cours Spécialisés 8, (2001).
|
[2] |
A. Baider, R. C. Churchill, D. L. Rod and M. F. Singer, On the infinitesimal geometry of integrable systems,, in Mechanics Day (Waterloo, (1992), 5.
|
[3] |
G. Casale, Morales-Ramis theorems via Malgrange pseudogroup,, Annales de l'Institut Fourier, 59 (2009), 2593.
doi: 10.5802/aif.2501. |
[4] |
G. Duval and A. J. Maciejewski, Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials,, Annales de l'Institut Fourier, 59 (2009), 2839.
doi: 10.5802/aif.2510. |
[5] |
N. V. Grigorenko, Abelian extensions in Picard-Vessiot theory,, Mat. Zametki, 17 (1975), 113.
|
[6] |
J. E. Humphreys, Linear Algebraic Groups,, Graduate Texts in Mathematics, (1975).
|
[7] |
E. R. Kolchin, Algebraic groups and algebraic dependence,, Amer. J. Math., 90 (1968), 1151.
doi: 10.2307/2373294. |
[8] |
A. J. Maciejewski and M. Przybylska, Differential Galois theory and integrability,, Internat. J. Geom. Methods in Modern Phys., 6 (2009), 1357.
doi: 10.1142/S0219887809004272. |
[9] |
J. J. Morales-Ruiz and J.-P. Ramis, Integrability of dynamical systems through differential Galois theory: A practical guide,, in Differential algebra, 509 (2010), 143.
doi: 10.1090/conm/509/09980. |
[10] |
J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Ann. Sci. Éc. Norm. Supér, 40 (2007), 845.
doi: 10.1016/j.ansens.2007.09.002. |
[11] |
M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations, vol. 328 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (2003).
|
[1] |
Guillaume Duval, Andrzej J. Maciejewski. Integrability of potentials of degree $k \neq \pm 2$. Second order variational equations between Kolchin solvability and Abelianity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1969-2009. doi: 10.3934/dcds.2015.35.1969 |
[2] |
Regina Martínez, Carles Simó. Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 1-24. doi: 10.3934/dcds.2011.29.1 |
[3] |
Mitsuru Shibayama. Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3707-3719. doi: 10.3934/dcds.2015.35.3707 |
[4] |
Delia Schiera. Existence and non-existence results for variational higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5145-5161. doi: 10.3934/dcds.2018227 |
[5] |
Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013 |
[6] |
Dung Le. Higher integrability for gradients of solutions to degenerate parabolic systems. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 597-608. doi: 10.3934/dcds.2010.26.597 |
[7] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[8] |
Peiguang Wang, Xiran Wu, Huina Liu. Higher order convergence for a class of set differential equations with initial conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020342 |
[9] |
Baruch Cahlon. Sufficient conditions for oscillations of higher order neutral delay differential equations. Conference Publications, 1998, 1998 (Special) : 124-137. doi: 10.3934/proc.1998.1998.124 |
[10] |
R.S. Dahiya, A. Zafer. Oscillation theorems of higher order neutral type differential equations. Conference Publications, 1998, 1998 (Special) : 203-219. doi: 10.3934/proc.1998.1998.203 |
[11] |
Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387 |
[12] |
Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557 |
[13] |
Jaume Llibre, Claudia Valls. Analytic integrability of a class of planar polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2657-2661. doi: 10.3934/dcdsb.2015.20.2657 |
[14] |
Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81 |
[15] |
Chiara Leone, Anna Verde, Giovanni Pisante. Higher integrability results for non smooth parabolic systems: The subquadratic case. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 177-190. doi: 10.3934/dcdsb.2009.11.177 |
[16] |
Kristian Moring, Christoph Scheven, Sebastian Schwarzacher, Thomas Singer. Global higher integrability of weak solutions of porous medium systems. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1697-1745. doi: 10.3934/cpaa.2020069 |
[17] |
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025 |
[18] |
Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933 |
[19] |
Yanfei Lu, Qingfei Yin, Hongyi Li, Hongli Sun, Yunlei Yang, Muzhou Hou. Solving higher order nonlinear ordinary differential equations with least squares support vector machines. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1481-1502. doi: 10.3934/jimo.2019012 |
[20] |
Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]