2015, 2015(special): 793-800. doi: 10.3934/proc.2015.0793

Potential estimates and applications to elliptic equations

1. 

Mathematics and Mechanics Institute, Nat. Acad. Sci. of Azerbaijan, Az1001, 10, Istiglaliyyat str, Baku, Azerbaidjan

2. 

Dipartimento di Matematica, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy, Italy

Received  September 2014 Revised  March 2015 Published  November 2015

In this paper we prove a potential type estimate for the solutions of some classes of Dirichlet problems associated to certain non divergence structure elliptic equations with smooth datum. As a consequence of our potential bound, we can get an a priori estimate for the solutions of the same kind of Dirichlet problem, but with less regular datum.
Citation: Farman Mamedov, Sara Monsurrò, Maria Transirico. Potential estimates and applications to elliptic equations. Conference Publications, 2015, 2015 (special) : 793-800. doi: 10.3934/proc.2015.0793
References:
[1]

R. A. Amanov and F. I. Mamedov, On the regularity of the solutions of degenerate elliptic equations in divergence form,, Math. Notes, 83 (2008), 3.

[2]

M. Borsuk and V. Kondratiev, Elliptic boundary value problems of second order in piecewise smooth domains,, North-Holland Mathematical Library, (2006).

[3]

F. Chiarenza, M. Frasca and P. Longo, Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients,, Ricerche Mat., 40 (1991), 149.

[4]

F. Chiarenza, M. Frasca and P. Longo, $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with $VMO$ coefficients,, Trans. Amer. Math. Soc., 336 (1993), 841.

[5]

G. Di Fazio, $L^p$ estimates for divergence form elliptic equations with discontinuous coefficients,, Boll. Unione Mat. Ital. A, 10 (1996), 409.

[6]

D. Gilbarg andN. S. Trudinger, Elliptic partial differential equations of second order,, Reprint of the 1998 edition, (1998).

[7]

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations,, Academic Press, (1968).

[8]

N. S. Landkof, Foundations of modern potential theory,, Die Grundlehren der mathematischen Wissenschaften, (1972).

[9]

F. I. Mamedov, Regularity of solutions of linear and quasilinear equations of elliptic type in divergence form,, Math. Notes, 53 (1993), 50.

[10]

A. Maugeri, D. K. Palagachev and L. G. Softova, Elliptic and parabolic equations with discontinuous coefficients,, Mathematical Research, (2000).

[11]

C. Miranda, Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui,, Ann. Mat. Pura Appl., 63 (1963), 353.

[12]

S. G. Samko, Hypersingular integrals and their applications,, Analytical Methods and Special Functions, (2002).

[13]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives. Theory and applications,, translated from the 1987 Russian original, (1987).

[14]

E. Stein, Singular integrals and differentiability properties of functions,, Princeton Mathematical Series, (1970).

[15]

G. Talenti, Sopra una classe di equazioni ellittiche a coefficienti misurabili,, Ann. Mat. Pura Appl., 69 (1965), 285.

show all references

References:
[1]

R. A. Amanov and F. I. Mamedov, On the regularity of the solutions of degenerate elliptic equations in divergence form,, Math. Notes, 83 (2008), 3.

[2]

M. Borsuk and V. Kondratiev, Elliptic boundary value problems of second order in piecewise smooth domains,, North-Holland Mathematical Library, (2006).

[3]

F. Chiarenza, M. Frasca and P. Longo, Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients,, Ricerche Mat., 40 (1991), 149.

[4]

F. Chiarenza, M. Frasca and P. Longo, $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with $VMO$ coefficients,, Trans. Amer. Math. Soc., 336 (1993), 841.

[5]

G. Di Fazio, $L^p$ estimates for divergence form elliptic equations with discontinuous coefficients,, Boll. Unione Mat. Ital. A, 10 (1996), 409.

[6]

D. Gilbarg andN. S. Trudinger, Elliptic partial differential equations of second order,, Reprint of the 1998 edition, (1998).

[7]

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations,, Academic Press, (1968).

[8]

N. S. Landkof, Foundations of modern potential theory,, Die Grundlehren der mathematischen Wissenschaften, (1972).

[9]

F. I. Mamedov, Regularity of solutions of linear and quasilinear equations of elliptic type in divergence form,, Math. Notes, 53 (1993), 50.

[10]

A. Maugeri, D. K. Palagachev and L. G. Softova, Elliptic and parabolic equations with discontinuous coefficients,, Mathematical Research, (2000).

[11]

C. Miranda, Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui,, Ann. Mat. Pura Appl., 63 (1963), 353.

[12]

S. G. Samko, Hypersingular integrals and their applications,, Analytical Methods and Special Functions, (2002).

[13]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives. Theory and applications,, translated from the 1987 Russian original, (1987).

[14]

E. Stein, Singular integrals and differentiability properties of functions,, Princeton Mathematical Series, (1970).

[15]

G. Talenti, Sopra una classe di equazioni ellittiche a coefficienti misurabili,, Ann. Mat. Pura Appl., 69 (1965), 285.

[1]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[2]

Patrick Winkert, Rico Zacher. A priori bounds for weak solutions to elliptic equations with nonstandard growth. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 865-878. doi: 10.3934/dcdss.2012.5.865

[3]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[4]

Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145

[5]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[6]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[7]

Alfonso Castro, Rosa Pardo. A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 783-790. doi: 10.3934/dcdsb.2017038

[8]

Tongren Ding, Hai Huang, Fabio Zanolin. A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 103-117. doi: 10.3934/dcds.1995.1.103

[9]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[10]

Xiaomei Sun, Yimin Zhang. Elliptic equations with cylindrical potential and multiple critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1943-1957. doi: 10.3934/cpaa.2013.12.1943

[11]

Yutian Lei. Wolff type potential estimates and application to nonlinear equations with negative exponents. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2067-2078. doi: 10.3934/dcds.2015.35.2067

[12]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

[13]

Yi-hsin Cheng, Tsung-Fang Wu. Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2457-2473. doi: 10.3934/cpaa.2016044

[14]

Song Peng, Aliang Xia. Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potential. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1201-1217. doi: 10.3934/cpaa.2018058

[15]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[16]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[17]

Dian Palagachev, Lubomira Softova. A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 721-742. doi: 10.3934/dcds.2005.13.721

[18]

Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinetic & Related Models, 2015, 8 (4) : 617-650. doi: 10.3934/krm.2015.8.617

[19]

Junjie Zhang, Shenzhou Zheng. Weighted lorentz estimates for nondivergence linear elliptic equations with partially BMO coefficients. Communications on Pure & Applied Analysis, 2017, 16 (3) : 899-914. doi: 10.3934/cpaa.2017043

[20]

Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

 Impact Factor: 

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (1)

[Back to Top]