`a`

Numerical approximation of the Chan-Hillard equation with memory effects in the dynamics of phase separation

Pages: 953 - 962, Issue Special, September 2011

 Abstract        Full Text (329.2K)              

Nicolas Lecoq - Groupe de Physique de Matériaux UMR CNRS6634, Université de Rouen, 1, Avenue de l'Université, 76801 Saint-Etienne du Rouvray, France (email)
Helena Zapolsky - Groupe de Physique de Matériaux UMR CNRS6634, Université de Rouen, 1, Avenue de l'Université, 76801 Saint-Etienne du Rouvray, France (email)
P.K. Galenko - Institut für Materialphysik im Weltraum, DLR- Deutsches Zentrum für Luft- und Raumfahrt, 51170 Köln, Germany (email)

Abstract: We consider the modifi ed Cahn-Hilliard equation for phase separation suggested to account for spinodal decomposition in deeply supercooled binary alloy systems or glasses. This equation contains, as additional term, the second-order time derivative of the concentration multiplied by a positive coefficient $\Tau_d$ (time for relaxation). We consider a numerical approximation scheme based on Fourier spectral method and perform numerical analysis of the scheme. We present results of numerical simulations for three spatial dimensions, and examine the stability and convergence of the scheme.

Keywords:  Cahn-Hilliard equation, Spinodal decomposition, Memory eff ects, Numerical analysis.
Mathematics Subject Classification:  Primary: 65M12, 65M22, 68U20; Secondary: 74D10.

Received: July 2010;      Revised: May 2011;      Published: October 2011.