`a`

Numerical study of secondary heteroclinic bifurcations near non-reversible homoclinic snaking

Pages: 1244 - 1253, Issue Special, September 2011

 Abstract        Full Text (869.8K)              

Thorsten Riess - Universit├Ąt Konstanz, INCIDE, Fach 698, 78457 Konstanz, Germany (email)

Abstract: We discuss the emergence of isolas of secondary heteroclinic bifurcations near a non-reversible homoclinic snaking curve in parameter space that is generated by a codimension-one equilibrium-to-periodic (EtoP) heteroclinic cycle. We use a numerical method based on Lin's method to compute and continue these secondary heteroclinic EtoP orbits for a well-known system.

Keywords:  Heteroclinic bifurcations, homoclinic snaking
Mathematics Subject Classification:  Primary: 34C37, 37M20; Secondary: 65L10

Received: July 2010;      Revised: February 2011;      Published: October 2011.