2013, 2013(special): 51-59. doi: 10.3934/proc.2013.2013.51

Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem

1. 

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy

2. 

Dipartimento di Matematica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy

Received  September 2012 Published  November 2013

In this paper we investigate the existence of infinitely many radial solutions for the elliptic Dirichlet problem \[ \left\{ \begin{array}{ll} \displaystyle{-\Delta_p u\ =|u|^{q-2}u + f(x)} & \mbox{ in } B_R,\\ \displaystyle{u=\xi} & \mbox{ on } \partial B_R,\\ \end{array} \right. \] where $B_R$ is the open ball centered in $0$ with radius $R$ in $\mathbb{R}^N$ ($N \geq 3$), $2 < p < N$, $p< q < p^*$ (with $p^* = \frac{pN}{N-p}$), $\xi\in\mathbb{R}$ and $f$ is a continuous radial function in $\overline B_R$. The lack of even symmetry for the related functional is overcome by using some perturbative methods and the radial assumptions allow us to improve some previous results.
Citation: Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51
References:
[1]

A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications,, Trans. Amer. Math. Soc., 267 (1981), 1.   Google Scholar

[2]

A. Bahri and P. L. Lions, Morse index of some min-max critical points. I. Applications to multiplicity results,, Comm. Pure Appl. Math., 41 (1988), 1027.   Google Scholar

[3]

R. Bartolo, Infinitely many solutions for quasilinear elliptic problems with broken symmetry,, Adv. Nonlinear Stud., 13 (2013), 739.   Google Scholar

[4]

P. Bolle, On the Bolza problem,, J. Differential Equations, 152 (1999), 274.   Google Scholar

[5]

P. Bolle, N. Ghoussoub and H. Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems,, Manuscripta Math., 101 (2000), 325.   Google Scholar

[6]

A. Candela, G. Palmieri and A. Salvatore, Radial solutions of semilinear elliptic equations with broken symmetry,, Topol. Methods Nonlinear Anal., 27 (2006), 117.   Google Scholar

[7]

A. Candela and A. Salvatore, Multiplicity results of an elliptic equation with non homogeneous boundary conditions,, Topol. Methods Nonlinear Anal., 11 (1998), 1.   Google Scholar

[8]

A. Candela, A. Salvatore and M. Squassina, Semilinear elliptic systems with lack of symmetry,, In:, (2001).   Google Scholar

[9]

M. Clapp, Y. Ding and S. Hernández-Linares, Strongly indefinite functionals with perturbed symmetries and multiple solutions of nonsymmetric elliptic systems,, Electron. J. Differential Equations, 100 (2004).   Google Scholar

[10]

E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations,, Nonlinear Anal., 7 (1983), 827.   Google Scholar

[11]

G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with $p$-Laplacian,, Port. Math. (N. S.), 58 (2001), 339.   Google Scholar

[12]

J. García Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term,, Trans. Amer. Math. Soc., 323 (1991), 877.   Google Scholar

[13]

M. Guedda and L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents,, Nonlinear Anal., 13 (1989), 879.   Google Scholar

[14]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, Nonlinear Anal., 12 (1988), 1203.   Google Scholar

[15]

D. Liu and D. Geng, Infinitely many solutions for the $p$-Laplace equations with nonsymmetric perturbations,, Electron. J. Differential Equations, 101 (2008).   Google Scholar

[16]

P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals,, Trans. Amer. Math. Soc., 272 (1982), 753.   Google Scholar

[17]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,, CBMS Regional Conference Series in Mathematics, (1986).   Google Scholar

[18]

M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems,, Manuscripta Math., 32 (1980), 335.   Google Scholar

[19]

K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications,, Comm. Partial Differential Equations, 14 (1989), 99.   Google Scholar

[20]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Differential Equations, 51 (1984), 126.   Google Scholar

[21]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland Mathematical Library, (1978).   Google Scholar

show all references

References:
[1]

A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications,, Trans. Amer. Math. Soc., 267 (1981), 1.   Google Scholar

[2]

A. Bahri and P. L. Lions, Morse index of some min-max critical points. I. Applications to multiplicity results,, Comm. Pure Appl. Math., 41 (1988), 1027.   Google Scholar

[3]

R. Bartolo, Infinitely many solutions for quasilinear elliptic problems with broken symmetry,, Adv. Nonlinear Stud., 13 (2013), 739.   Google Scholar

[4]

P. Bolle, On the Bolza problem,, J. Differential Equations, 152 (1999), 274.   Google Scholar

[5]

P. Bolle, N. Ghoussoub and H. Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems,, Manuscripta Math., 101 (2000), 325.   Google Scholar

[6]

A. Candela, G. Palmieri and A. Salvatore, Radial solutions of semilinear elliptic equations with broken symmetry,, Topol. Methods Nonlinear Anal., 27 (2006), 117.   Google Scholar

[7]

A. Candela and A. Salvatore, Multiplicity results of an elliptic equation with non homogeneous boundary conditions,, Topol. Methods Nonlinear Anal., 11 (1998), 1.   Google Scholar

[8]

A. Candela, A. Salvatore and M. Squassina, Semilinear elliptic systems with lack of symmetry,, In:, (2001).   Google Scholar

[9]

M. Clapp, Y. Ding and S. Hernández-Linares, Strongly indefinite functionals with perturbed symmetries and multiple solutions of nonsymmetric elliptic systems,, Electron. J. Differential Equations, 100 (2004).   Google Scholar

[10]

E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations,, Nonlinear Anal., 7 (1983), 827.   Google Scholar

[11]

G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with $p$-Laplacian,, Port. Math. (N. S.), 58 (2001), 339.   Google Scholar

[12]

J. García Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term,, Trans. Amer. Math. Soc., 323 (1991), 877.   Google Scholar

[13]

M. Guedda and L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents,, Nonlinear Anal., 13 (1989), 879.   Google Scholar

[14]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations,, Nonlinear Anal., 12 (1988), 1203.   Google Scholar

[15]

D. Liu and D. Geng, Infinitely many solutions for the $p$-Laplace equations with nonsymmetric perturbations,, Electron. J. Differential Equations, 101 (2008).   Google Scholar

[16]

P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals,, Trans. Amer. Math. Soc., 272 (1982), 753.   Google Scholar

[17]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,, CBMS Regional Conference Series in Mathematics, (1986).   Google Scholar

[18]

M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems,, Manuscripta Math., 32 (1980), 335.   Google Scholar

[19]

K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications,, Comm. Partial Differential Equations, 14 (1989), 99.   Google Scholar

[20]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Differential Equations, 51 (1984), 126.   Google Scholar

[21]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland Mathematical Library, (1978).   Google Scholar

[1]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[2]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[3]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[4]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[7]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[8]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[9]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[10]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[11]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[12]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[15]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[16]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[19]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[20]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

 Impact Factor: 

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

[Back to Top]