2001, 2001(Special): 319-326. doi: 10.3934/proc.2001.2001.319

Poiseuille flow of nanofluids confined in slit nanopores

1. 

Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, United Kingdom, GU2 5XH, United Kingdom

Published  November 2013

Please refer to Full Text.
Citation: Liudmila A. Pozhar. Poiseuille flow of nanofluids confined in slit nanopores. Conference Publications, 2001, 2001 (Special) : 319-326. doi: 10.3934/proc.2001.2001.319
[1]

Igor Chueshov, Tamara Fastovska. On interaction of circular cylindrical shells with a Poiseuille type flow. Evolution Equations & Control Theory, 2016, 5 (4) : 605-629. doi: 10.3934/eect.2016021

[2]

Mohamed Tij, Andrés Santos. Non-Newtonian Couette-Poiseuille flow of a dilute gas. Kinetic & Related Models, 2011, 4 (1) : 361-384. doi: 10.3934/krm.2011.4.361

[3]

Hong Zhou, M. Gregory Forest. Anchoring distortions coupled with plane Couette & Poiseuille flows of nematic polymers in viscous solvents: Morphology in molecular orientation, stress & flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 407-425. doi: 10.3934/dcdsb.2006.6.407

[4]

Hassib Selmi, Lassaad Elasmi, Giovanni Ghigliotti, Chaouqi Misbah. Boundary integral and fast multipole method for two dimensional vesicle sets in Poiseuille flow. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 1065-1076. doi: 10.3934/dcdsb.2011.15.1065

[5]

Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059

[6]

Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373

[7]

Thomas Hudson. Gamma-expansion for a 1D confined Lennard-Jones model with point defect. Networks & Heterogeneous Media, 2013, 8 (2) : 501-527. doi: 10.3934/nhm.2013.8.501

[8]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[9]

Magnus Aspenberg, Fredrik Ekström, Tomas Persson, Jörg Schmeling. On the asymptotics of the scenery flow. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2797-2815. doi: 10.3934/dcds.2015.35.2797

[10]

Tai-Ping Liu, Zhouping Xin, Tong Yang. Vacuum states for compressible flow. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 1-32. doi: 10.3934/dcds.1998.4.1

[11]

Thomas H. Otway. Compressible flow on manifolds. Conference Publications, 2001, 2001 (Special) : 289-294. doi: 10.3934/proc.2001.2001.289

[12]

Tracy L. Payne. The Ricci flow for nilmanifolds. Journal of Modern Dynamics, 2010, 4 (1) : 65-90. doi: 10.3934/jmd.2010.4.65

[13]

Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks & Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41

[14]

Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525

[15]

Radu C. Cascaval, Ciro D'Apice, Maria Pia D'Arienzo, Rosanna Manzo. Flow optimization in vascular networks. Mathematical Biosciences & Engineering, 2017, 14 (3) : 607-624. doi: 10.3934/mbe.2017035

[16]

Sergey A. Suslov. Two-equation model of mean flow resonances in subcritical flow systems. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 165-176. doi: 10.3934/dcdss.2008.1.165

[17]

Gui-Qiang Chen, Bo Su. A viscous approximation for a multidimensional unsteady Euler flow: Existence theorem for potential flow. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1587-1606. doi: 10.3934/dcds.2003.9.1587

[18]

Joey Y. Huang. Trajectory of a moving curveball in viscid flow. Conference Publications, 2001, 2001 (Special) : 191-198. doi: 10.3934/proc.2001.2001.191

[19]

Michael Renardy. Backward uniqueness for linearized compressible flow. Evolution Equations & Control Theory, 2015, 4 (1) : 107-113. doi: 10.3934/eect.2015.4.107

[20]

R.E. Showalter, Ning Su. Partially saturated flow in a poroelastic medium. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 403-420. doi: 10.3934/dcdsb.2001.1.403

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]