`a`
Mathematical Biosciences and Engineering (MBE)
 

Modelling random antibody adsorption and immunoassay activity
Pages: 1159 - 1168, Issue 6, December 2016

doi:10.3934/mbe.2016036      Abstract        References        Full text (382.6K)           Related Articles

D. Mackey - School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland (email)
E. Kelly - School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland (email)
R. Nooney - Biomedical Diagnostics Institute, Dublin City University, Glasnevin, Dublin 9, Ireland (email)

1 D. A. Edwards, Steric hindrance effects on surface reactions: Applications to BIAcore, J. Math. Biol., 55 (2007), 517-539.       
2 J. W. Evans, Random and cooperative sequential adsorption, Rev. Mod. Phys., 65 (1993), 1281.
3 V. Gubala, C. Crean, R. Nooney, S. Hearty, B. McDonnell, K. Heydon, R. O'Kennedy, B. D. MacCraith and D. E. Williams, Kinetics of immunoassays with particles as labels: Effect of antibody coupling using dendrimers as linkers, Analyst, 136 (2011), 2533-2541.
4 M. K. Hassan, J. Schmidt, B. Blasius and J. Kurths, Jamming coverage in competitive random sequential adsorption of a binary mixture, Phys. Rev. E, 65 (2002), 045103.
5 P. L. Krapivsky, Kinetics of random sequential parking on a line, J. Stat. Phys., 69 (1992), 135-150.       
6 A. Rényi, On a one-dimensional problem concerning random space-filling (In Hungarian), Publ. Math. Inst. Hung. Acad. Sci, 3 (1958), 109-127.       
7 J. C. Roach, V. Thorsson and A. F. Siegel, Parking strategies for genome sequencing, Genome Research, 10 (2000), 1020-1030.
8 B. Saha. T. H. Evers and M. W. J. Prins, How antibody surface coverage on nanoparticles determines the activity and kinetics of antigen capturing for biosensing, Anal. Chem., 86 (2014), 8158-8166.
9 W. Schramm and S. Paek, Antibody-antigen complex formation with immobilized immunoglobulins, Anal. Biochem., 205 (1992), 47-56.
10 J. Talbot, G. Tarjus, P. R. Van Tassel and P. Viot, From car parking to protein adsorption: An overview of sequential adsorption processes, Colloids Surf. A, 165 (2000), 287-324.
11 M. L. M. Vareiro, J. Liu, W. Knoll, K. Zak, D. Williams and A. T. A. Jenkins, Surface plasmon fluorescence measurements of human chorionic gonadotrophin: role of antibody orientation in obtaining enhanced sensitivity and limit of detection, Anal. Chem., 77 (2005), 2426-2431.
12 D. Wild (editor), The Immunoassay Handbook, $3^{rd}$ edition, Elsevier, 2005.
13 M. E. Wiseman and C. W. Frank, Antibody adsorption and orientation on hydrophobic surfaces, Langmuir, 28 (2012), 1765-1774.
14 H. Xu, J. R. Lu and D. E. Williams, Effect of surface packing density of interfacially adsorbed monoclonal antibody on the binding of hormonal antigen human chorionic gonadotrophin, J. Phys. Chem. B, 110 (2006), 1907-1914.
15 H. Xu, X. Zhao, C. Grant, J. R. Lu, D. E. Williams and J. Penfold, Orientation of a monoclonal antibody adsorbed at the solid/solution interface: A combined study using atomic force microscopy and neutron reflectivity, Langmuir, 22 (2006), 6313-6320.
16 X. Zhao, F. Pan, B. Cowsill, J. R. Lu, L. Garcia-Gancedo, A. J. Flewitt, G. M. Ashley and J. Luo, Interfacial immobilization of monoclonal antibody and detection of human prostate-specific antigen, Langmuir, 27 (2011), 7654-7662.

Go to top