`a`
Mathematical Biosciences and Engineering (MBE)
 

Sensitivity of signaling pathway dynamics to plasmid transfection and its consequences
Pages: 1207 - 1222, Issue 6, December 2016

doi:10.3934/mbe.2016039      Abstract        References        Full text (4944.8K)           Related Articles

Jaroslaw Smieja - Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-101 Gliwice, Poland (email)
Marzena Dolbniak - Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland (email)

1 S. T. M. Allard and K. Kopish, Luciferase reporter assays: Powerful, adaptable tools for cell biology research, Cell Notes, 21 (2008), 23-26.
2 J. Bachmann, A. Raue, M. Schilling, V. Becker, J. Timmer and U. Klingmueller, Predictive mathematical models of cancer signalling pathways, J. Intern. Med., 271 (2012), 155-165.
3 D. Bakstad, A. Adamson, D. G. Spiller and M. R. White, Quantitative measurement of single cell dynamics, Curr. Opin. Biotechnol., 23 (2013), 103-109.
4 S. Basak, M. Behar and A. Hoffmann, Lessons from mathematically modeling the NF-$\kappa$B pathway, Immunol. Rev., 1 (2012), 221-238.
5 I. Bentwich, A. Avniel, Y. Karov, R. Aharonov, S. Gilad, O. Barad, A. Barzilai, P. Einat, U. Einav, E. Meiri, E. Sharon, Y. Spector and Z. Bentwich, Identification of hundreds of conserved and nonconserved human microRNAs, Nat. Genet., 37 (2005), 766-770.
6 R. Cheong, A. Bergmann, S. L. Werner, J. Regal and A. Hoffmann, Transient I$\kappa$B kinase activity mediates temporal NF-$\kappa$B dynamics in response to wide range of tumour necrosis factor-$\alpha$ doses, J. Biol. Chem., 281 (2006), 2945-2950.
7 A. E. Erson-Bensan, Introduction to microRNAs in biological systems, Methods Mol. Biol., 1107 (2014), 1-14.
8 R. C. Friedman, K. K. Farh, C. B. Burge and D. P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res., 19 (2009), 92-105.
9 A. Grimson, K. K. Farh, W. K. Johnston, P. Garrett-Engele, L. P. Lim and D. Bartel, MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing, Mol. Cell, 27 (2007), 91-105.
10 J. Hayes, P. P. Peruzzi and S. Lawler, MicroRNAs in cancer: Biomarkers, functions and therapy, Trends Mol. Med., 20 (2014), 460-469.
11 P. Iglesias and B. Ingalls (editors), Control Theory and Systems Biology, MIT Press, Cambridge, Mass., 2010.       
12 B. P. Lewis, C. B. Burge and D. P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell, 120 (2005), 15-20.
13 L. P. Lim, N. C. Lau, E. G. Weinstein, A. Abdelhakim, S. Yekta, M. W. Rhoades, C. B. Burge and D. P. Bartel, The microRNAs of Caenorhabditis elegans, Genes Dev., 17 (2003), 991-1008.
14 T. Lipniacki, P. Paszek, A. R. Brasier, B. Luxon and M. Kimmel, Mathematical model of NF$\kappa$B regulatory module, J. Theor. Biol., 228 (2004), 195-215.       
15 J. Smieja, Coupled analytical and numerical approach to uncovering new regulatory mechanisms of intracellular processes, Int. J. Appl. Math. Comp. Sci., 20 (2010), 781-788.
16 J. Smieja and M. Dolbniak, Experimental data in modeling of intracellular processes, Proc. IASTED Int. Conf. Modelling, Identification and Control (MIC 2015), (2015), 105-109.
17 Y. Takei, M. Takigahira, K. Mihara, Y. Tarumi and K. Yanagihara, The metastasis-associated microRNA miR-516a-3p is a novel therapeutic target for inhibiting peritoneal dissemination of human scirrhous gastric cancer, Cancer Res., 71 (2011), 1442-1453.
18 D. A. Turner, P. Paszek, D. J. Woodcock, C. A. Horton, Y. Wang, D. G. Spiller, D. A. Rand, M. R. H. White and C. V. Harper, Physiological levels of TNF $\alpha$ stimulation induce stochastic dynamics of NF-$\kappa$B responses in single living cells, J. Cell Sci., 324 (2010), 2834-2843.
19 J. J. Tyson, R. Albert, A. Goldbeter, P. Ruoff and J. Sible, Biological switches and clocks, J. R. Soc. Interface, 5 (2008), S1-S8.
20 A. V. Orang, R. Safaralizadeh and M. Kazemzadeh-Bavili, Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Int. J. Genomics, 2014 (2014), 970607.
21 X. Wang, Y. Li, X. Xu and Y. H. Wang, Toward a system-level understanding of microRNA pathway via mathematical modeling, Biosystems, 100 (2010), 31-38.
22 R. A. Williams, J. Timmis and E. E. Qwarnstrom, Computational models of the NF-$\kappa$B signalling pathway, Computation, 2 (2014), 131-158.
23 X. Xue, W. Xia and H. Wenzhong, A modeled dynamic regulatory network of NF-kB and IL-6 mediated by miRNA, BioSystems, 114 (2013), 214-218.
24 F. Yan, H. Liu and Z. Liu, Dynamic analysis of the combinatorial regulation involving transcription factors and microRNAs in cell fate decisions, Bioch et Biophysica Acta, 1844 (2014), 248-257.
25 W. Zhou, Y. Li, X. Wang, L. Wu and Y. Wang, MiR-206-mediated dynamic mech-anism of the mammalian circadian clock, BMC Syst. Biol., 5 (2011), 141.

Go to top