An application of queuing theory to SIS and SEIS epidemic models
Pages: 809  823,
Volume 7,
Issue 4,
October
2010
doi:10.3934/mbe.2010.7.809 Abstract
References
Full text (405.0K)
Related Articles
Carlos M. HernándezSuárez  Facultad de Ciencias, Universidad de Colima, Apdo. Postal 25, Colima, Colima, Mexico (email)
Carlos CastilloChavez  Mathematics, Computational and Modeling Sciences Center, Arizona State University PO Box 871904, Tempe, AZ, 85287, United States (email)
Osval Montesinos López  Facultad de Ciencias, Universidad de Colima, Apdo. Postal 25, Colima, Colima, Mexico (email)
Karla HernándezCuevas  Facultad de Ciencias, Universidad de Colima, Apdo. Postal 25, Colima, Colima, Mexico (email)
1 
S. Ross, "Introduction to Probability Models," Academic Press, 2007. 

2 
D. Kendall, Some problems in the theory of queues, Journal of the Royal Statistical Society Series B (Methodological), 13 (1951) 151185. 

3 
D. Kendall, Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded markov chain, The Annals of Mathematical Statistics, 24 (1953), 338354. 

4 
M. Kitaev, The M/G/1 processorsharing model: Transient behavior, Queueing Systems, 14 (1993), 239273. 

5 
H. Andersson and T. Britton, "Stochastic Epidemic Models and Their Statistical Analysis," Springer Verlag, 2000. 

6 
T. Sellke, On the asymptotic distribution of the size of a stochastic epidemic, J. Appl. Probab., 20 (1983), 390394. 

7 
F. Ball and P. Donnelly, Strong approximations for epidemic models, Stochastic Processes and Their Applications, 55 (1995), 121. 

8 
P. Trapman and M. Bootsma, A useful relationship between epidemiology and queueing theory: The distribution of the number of infectives at the moment of the first detection, Mathematical Biosciences, 219 (2009), 1522. 

9 
H. Andersson and B. Djehiche, A threshold limit theorem for the stochastic logistic epidemic, J. Appl. Probab., 35 (1998), 662670, http://projecteuclid.org/getRecord?id=euclid.jap/1032265214. 

10 
H. Andersson and T. Britton, Stochastic epidemics in dynamic populations: Quasistationarity and extinction, J. Math. Biol., 41 (2000), 559580. 

11 
J. N. Darroch and E. Seneta, On quasistationary distributions in absorbing continuoustime finite Markov chains, J. Appl. Probability, 4 (1967), 192196. 

12 
J. Cavender, Quasistationary distributions of birthanddeath processes, Advances in Applied Probability, 10 (1978), 570586. 

13 
R. J. Kryscio and C. Lefèvre, On the extinction of the SIS stochastic logistic epidemic, J. Appl. Probab., 26 (1989), 685694. 

14 
W. Kermack and A. McKendrick, Contributions to the mathematical theory of epidemicsiii. Further studies of the problem of endemicity, Bulletin of Mathematical Biology, 53 (1991), 89118. 

15 
R. H. Norden, On the distribution of the time to extinction in the stochastic logistic population model, Adv. in Appl. Probab., 14 (1982), 687708. 

16 
I. Nåsell, On the quasistationary distribution of the stochastic logistic epidemic, Math. Biosci., 156 (1999), 2140, epidemiology, cellular automata and evolution (Sofia, 1997). 

17 
G. Weiss and M. Dishon, On the asymptotic behavior of the stochastic and deterministic models of an epidemic, Math. Biosci., 11 (1971), 261265. 

18 
D. J. Bartholomew, Continuous time diffusion models with random duration of interest, J. Mathematical Sociology, 4 (1976), 187199. 

19 
O. Ovaskainen, The quasistationary distribution of the stochastic logistic model, J. Appl. Probab., 38 (2001), 898907. 

20 
I. Nåsell, On the quasistationary distribution of the Ross malaria model, Mathematical Biosciences, 107 (1991), 187. 

21 
I. Nåsell, Extinction and quasistationarity in the Verhulst logistic model, Journal of Theoretical Biology, 211 (2001), 1127. 

22 
I. Nåsell, Stochastic models of some endemic infections, Math. Biosci., 179 (2002), 119. 

23 
C. HernándezSuárez and C. CastilloChavez, A basic result on the integral for birthdeath Markov processes, Mathematical Biosciences, 161 (1999), 95104. 

24 
V. T. Stefanov and S. Wang, A note on integrals for birthdeath processes, Math. Biosci., 168 (2000), 161165. 

25 
F. Ball and V. T. Stefanov, Further approaches to computing fundamental characteristics of birthdeath processes, J. Appl. Probab., 38 (2001), 9951005. 

26 
M. VanHoorn, Algorithms and approximations for queueing systems, CWI Tract No. 8, CWI, Amsterdam, 1984. 

27 
D. Cox, "Renewal Theory," Monographs on Applied Probability and Statistics, Methuen and Co., 1962. 

Go to top
