Kinetic and Related Models (KRM)

The Spherical Harmonics Expansion model coupled to the Poisson equation
Pages: 1063 - 1079, Issue 4, December 2011

doi:10.3934/krm.2011.4.1063      Abstract        References        Full text (241.6K)           Related Articles

Jan Haskovec - RICAM, Austrian Academy of Sciences, Altenbergerstrasse 69, Linz, A-4040, Austria (email)
Nader Masmoudi - Courant Institute of Mathematical Sciences, New York University, 251 Mercer street, New York, 10012, United States (email)
Christian Schmeiser - Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, Vienna, A-1090, Austria (email)
Mohamed Lazhar Tayeb - Department of Mathematics, University of Tunis ElManar, Faculty of Sciences of Tunis, 2092 El-Manar, Tunisia (email)

1 N. Ben Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system, Math. Meth. in the Appl. Sci., 17 (1994), 451-476.       
2 N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37 (1996), 3306-3333.       
3 N. Ben Abdallah and J. Dolbeault, Relative entropies for the Vlasov-Poisson system in bounded domains, C. R. Acad. Sci. Paris Ser. I Math., 330 (2000), 867-872.       
4 N. Ben Abdallah, P. Degond, P. Markowich and C. Schmeiser, High field approximations of the spherical harmonics expansion model for semiconductors, ZAMP, 52 (2001), 201-230.       
5 N. Ben Abdallah and M. L. Tayeb, Diffusion approximation for the one dimensional Boltzmann-Poisson system, DCDS-B, 4 (2004), 1129-1142.       
6 H. Brezis, "Analyse Fonctionnelle, Théorie et Applications,'' Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.       
7 D. Chen, E. C. Kan, U. Ravaioli, C. Shu and R. W. Dutton, An improved energy transport model including non-parabolicity and non-Maxwellian distribution effects, IEEE Electron Dev. Lett., 13 (1992), 235-239.
8 C. Cercignani, R. Illner, M. Pulvirenti, "The Mathematical Theory of Dilute Gases,'' Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994.       
9 P. Degond and S. Schmeiser, Macroscopic models for semiconductor heterostructures, J. Math. Phys., 39 (1998), 4634-4663.       
10 L. C. Evans, "Partial Differential Equations,'' Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, Rhode Island, 1998.       
11 H. Grad, Asymptotic theory of the Boltzmann equation, Phys. Fluids, 6 (1963), 147-181.       
12 H. Grad, Principles of the kinetic theory of gases, in "Handbuch der Physik" (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, Springer-Verlag, Berlin-Göttingen-Heidelberg, (1958), 205-294.       
13 E. Lyumkis, B. Polsky, A. Shur and P. Visocky, Transient semiconductor device simulation including energy balance equation, COMPEL, 11 (1992), 311-325.
14 P. A. Markowich, F. Popaud and C. Schmeiser, Diffusion approximation of nonlinear electron phonon collision mechanisms, RAIRO Modél. Math. Anal. Num., 29 (1995), 857-869.       
15 P. A. Markowich, C. Ringhofer and C. Schmeiser, "Semiconductor Equations,'' Springer-Verlag, Vienna, 1990.       
16 N. Masmoudi and M. L. Tayeb, Diffusion limit of a semiconductor Boltzmann-Poisson system, SIAM J. Math. Anal., 38 (2007), 1788-1807.       
17 M. L. Tayeb, From Boltzmann equation to spherical harmonics expansion model: Diffusion limit and Poisson coupling, Comm. Math. Sci., 9 (2011), 255-275.

Go to top