`a`
Advances in Mathematics of Communications (AMC)
 

Syndrome decoding for Hermite codes with a Sugiyama-type algorithm
Pages: 419 - 442, Issue 4, November 2012

doi:10.3934/amc.2012.6.419      Abstract        References        Full text (491.4K)           Related Articles

Irene I. Bouw - Institute of Pure Mathematics, Ulm University, Ulm, Germany (email)
Sabine Kampf - Institute of Communications Engineering, Ulm University, Ulm, Germany (email)

1 P. Beelen and T. Høholdt, The decoding of algebraic geometry codes, in "Advances in algebraic geometry codes, Ser. Coding Theory Cryptol.,'' 5 (2008), 99-152.       
2 D. Cox, J. Little and D. O'Shea, "Using Algebraic Geometry,'' Springer, 1998.       
3 I. M. Duursma, Algebraic geometry codes: general theory, in "Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol.,'' 5 (2008), 99-152.       
4 D. Ehrhard, "Über das Dekodieren algebraisch-geometrischer Codes,'' Dissertation, Universität Düsseldorf, 1991.
5 J. I. Farrán, Decoding algebraic geometry codes by the key equation, Finite Field Appl., 6 (2000), 207-217.       
6 G. L. Feng and T. R. N. Rao, Decoding algebraic-geometric codes up to the designed distance, IEEE Trans. Inform. Theory, 39 (1993), 37-45.       
7 V. D. Goppa, Codes on algebraic curves, Dokl. Akad. Nauk SSSR, 259 (1981), 1289-1290.       
8 V. Guruswami and M. Sudan, Improved decoding of Reed-Solomon and algebraic-geometric codes, in "39th Annual Symposium on Foundations of Computer Science,'' 1998.       
9 T. Høholdt, J. H. van Lint and R. Pellikaan, On the decoding of algebraic-geometric codes, IEEE Trans. Inform. Theory, 41 (1995), 1589-1614.       
10 T. Høholdt, J. H. van Lint and R. Pellikaan, Algebraic geometry codes, in "Handbook of Coding Theory,'' 1 (1998), 871-961.       
11 J. Justesen, K. Larsen, H. Jensen and T. Høholdt, Fast decoding of codes from algebraic plane curves, IEEE Trans. Inform. Theory, 38 (1992), 111-119.       
12 S. Kampf, Bounds on collaborative decoding of interleaved Hermitian codes with a division algorithm and virtual extension, 3ICMCTA Special Issue of Designs, Codes and Cryptography, accepted, 2012.
13 S. Kampf, M. Bossert and S. Bezzateev, Some results on list decoding of interleaved Reed-Solomon codes with the extended euclidean elgorithm, in "Proc. Coding Theory Days in St. Petersburg 2008,'' (2008), 31-36.
14 S. Kampf, M. Bossert and I. I. Bouw, Solving the key equation for Hermitian codes with a division algorithm, in "IEEE International Symposium on Information Theory,'' St. Petersburg, (2011), 1008-1012.
15 D. A. Leonard, A generalized Forney formula for algebraic-geometric codes, IEEE Trans. Inform. Theory, 42 (1996), 1263-1268.       
16 F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland Mathematical Library, 1988.
17 M. O'Sullivan and M. Bras-Amorós, The key equation for one-point codes, in "Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol.,'' 5 (2008), 99-152.       
18 S. C. Porter, B.-Z. Shen and R. Pellikaan, Decoding geometric Goppa codes using an extra place, IEEE Trans. Inform. Theory, 38 (1992), 1663-1676.       
19 R. M. Roth, "Introduction to Coding Theory,'' Cambridge University Press, 2006.
20 S. Sakata, J. Justesen, Y. Madelung, H. Elbrønd and T. Høholdt, Fast decoding of algebraic-geometric codes up to the designed minimum distance, IEEE Trans. Inform. Theory, 41 (1995), 1672-1677.       
21 B.-Z. Shen, Solving a congruence on a graded algebra by a subresultant sequence and its application, J. Symbolic Comput., 14 (1992), 505-522.       
22 A. Skorobogatov and S. G. Vlăduţ, On the decoding of algebraic-geometric codes, IEEE Trans. Inform. Theory, IT-36 (1990), 1051-1060.       
23 H. Stichenoth, "Algebraic Function Fields and Codes,'' 2nd edition, Springer-Verlag, 2009.       
24 M. A. Tsfasman and S. G. Vlăduţ, "Algebraic-Geometric Codes,'' Kluwer Academic Publishers Group, 1991.       
25 M. A. Tsfasman and S. G. Vlăduţ and T. Zink, Modular curves, Shimura curves and Goppa codes better than the Varshmov-Gilbert bound, Math. Nachr., 109 (1982), 21-28.       
26 K. Yang and P. V. Kumar, On the true minimal distance of Hermitian codes, in "Coding Theory and Algebraic Geometry (Luminy, 1991),'' Springer, Berlin, (1992), 99-107.       

Go to top