Understanding ThomasFermiLike approximations: Averaging over oscillating occupied orbitals
Pages: 5319  5325,
Issue 11/12,
November/December
2013
doi:10.3934/dcds.2013.33.5319 Abstract
References
Full text (258.5K)
Related Articles
John P. Perdew  Department of Physics and Quantum Theory Group, Tulane University, New Orleans, LA 70123, United States (email)
Adrienn Ruzsinszky  Department of Physics and Quantum Theory Group, Tulane University, New Orleans, LA 70123, United States (email)
1 
A. Messiah, "Quantum Mechanics," Dover, 1999. 

2 
L. H. Thomas, The calculation of atomic fields, Proc. Cambridge Philos. Soc., 23 (1926), 542548. 

3 
E. Fermi, Un metodo statistico per la determinazione di alcune proprieta dell atomo, Rend. Accad. Naz. Licei, 6 (1927), 602607. 

4 
J. A. Goldstein and G. R. Rieder, Some extensions of ThomasFermi theory, Lecture Notes in Mathematics, 1223 (1986), 110121. 

5 
J. A. Goldstein and G. R. Rieder, Recent rigorous results in ThomasFermi theory, Lecture Notes in Mathematics, 1394 (1989), 6882. 

6 
P. Benilan, J. A. Goldstein and G. R. Rieder, Nonlinear elliptic system arising in electrondensity theory, Communications in Partial Differential Equations, 17 (1992), 20792092. 

7 
G. R. Rieder, J. A. Goldstein and N. Naima, A convexified energy functional for the FermiAmaldi correction, Discrete and Continuous Systems, 28 (2010), 4165. 

8 
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136 (1964), B864B871. 

9 
W. Kohn and L. J. Sham, Selfconsistent equations including exchange and correlation, Phys. Rev., 140 (1965), A11333A1138. 

10 
S. Kurth and J. P. Perdew, Role of the exchangecorrelation energy: Nature's glue, Int. J. Quantum Chem., 77 (2000), 819830. 

11 
J. P. Perdew, L. A. Constantin, E. Sagvolden and K. Burke, Relevance of the slowlyvarying electron gas to atoms, molecules, and solids, Phys. Rev. Lett., 97 (2006), 223002, 4 pages. 

12 
J. Schwinger, ThomasFermi model: The leading correction, Phys. Rev. A, 22 (1980), 18271832; ThomasFermi model: The second correction, ibid., 24 (1981), 23532361. 

13 
B. G. Englert and J. Schwinger, Statistical atom: Some quantum improvements, Phys. Rev. A, 29 (1984), 23392352; Semiclassical atom, ibid., 32 (1985), 2635. 

14 
E. H. Lieb, The stability of matter, Rev. Mod. Phys., 48 (1976), 553569. 

15 
L. A. Constantin, J. C. Snyder, J. P. Perdew and K. Burke, Ionization potentials in the limit of large atomic number, J. Chem. Phys., 133 (2010), 241103, 4 pages. 

16 
J. P. Perdew and S. Kurth, Density functionals for nonrelativistic Coulomb systems in the new century, in "A Primer in Density Functional Theory" ( eds. C. Fiolhais, F. Nogueira and M. Marques), Lecture Notes in Physics, 620 (2003), 155. 

17 
J. P. Perdew and L. A. Constantin, Laplacianlevel density functionals for the kinetic energy density and exchangecorrelation energy, Phys. Rev. B, 75 (2007), 155109, 9 pages. 

18 
A. Cangi, D. Lee, P. Elliott, K. Burke and E. K. U. Gross, Electronic structure via potential functional approximations, Phys. Rev. Lett., 106 (2011), 236404, 4 pages. 

19 
D. C. Langreth and J. P. Perdew, The exchangecorrelation energy of a metallic surface, Solid State Commun., 17 (1975), 14251429. 

20 
O. Gunnarsson and B. I. Lundqvist, Exchange and correlation in atoms, molecules, and solids, Phys. Rev. B, 13 (1976), 42744298. 

21 
D. C. Langreth and J. P. Perdew, Exchangecorrelation energy of a metallic surface: Wavevector analysis, Phys. Rev. B, 15 (1977), 28842901. 

Go to top
