An interface problem: The twolayer shallow water equations
Pages: 5327  5345,
Issue 11/12,
November/December
2013
doi:10.3934/dcds.2013.33.5327 Abstract
References
Full text (891.0K)
Related Articles
Madalina Petcu  Laboratoire de Mathématiques et applications, Univ. de Poitiers, Teleport 2  BP 30179, Boulevard Marie et Pierre Curie, 86962, Futuroscope Chasseneuil Cedex, France (email)
Roger Temam  The Institute for Scientific Computing and Applied Mathematics, Indiana University, 831 East Third Street, Bloomington, Indiana 47405, United States (email)
1 
E. Audusse, A multilayer SaintVenant system: Derivation and numerical validation, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 189214. 

2 
A. Bousquet, M. Petcu, M.C. Shiue, R. Temam and J. Tribbia, Boundary conditions for limited area models, Commun. Comput. Phys., 14 (2013), no. 3, 664702. 

3 
S. BenzoniGavage and D. Serre, "Multidimensional Hyperbolic Partial Differential Equations. FirstOrder Systems and Applications," Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. 

4 
F. Bouchut and V. Zeitlin, A robust wellbalanced scheme for multilayer shallow water equations, Discrete Cont. Dyn. Syst. Ser. B, 13 (2010), 739758. 

5 
G.Q. Chen and P. LeFloch, Existence theory for the isentropic Euler equations, Arch. Rational Mech. Anal., 166 (2003), 8198. 

6 
Q. Chen, M.C. Shiue and R. Temam, The barotropic mode for the primitive equations, Special issue in memory of David Gottlieb, Journal of Scientific Computing, SpringerLink, 2009. 

7 
Q. Chen, M.C. Shiue, R. Temam and J. Tribbia, Numerical approximation of the inviscid 3D Primitive equations in a limited domain, Math. Mod. and Num. Anal., (M2AN), 46 (2012), no. 3, 619646. 

8 
M. J. P. Cullen, Analysis of the semigeostrophic shallow water equations, Phys. D, 237 (2008), 14611465. 

9 
R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys., 91 (1983), 130. 

10 
R. J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal., 82 (1983), 2770. 

11 
B. Engquist and A. Majda, Absorbing boundary conditions for numerical simulation of waves, Proc. Nat. Acad. Sci. USA, 74 (1977), 17651766. 

12 
B. Engquist and L. Halpern, Far field boundary conditions for computation over long time, Appl. Numer. Math., 4 (1988), 2145. 

13 
D. Givoli and B. Neta, Highorder nonre ecting boundary conditions for the dispersive shallow water equations, J. Comput. Appl. Math., 158 (2003), 4960. Selected Papers from the Conference on Computational and Math Ematical Methods for Science and Engineering (Alicante, 2002). 

14 
O. Guès, Problème mixte hyperbolique quasilinéaire caractéristique. (French) [The characteristic quasilinear hyperbolic mixed problem], Comm. Partial Differential Equations, 15 (1990), 595645. 

15 
R. L. Higdon, Absorbing boundary conditions for difference approximations to the multidimensional wave equation, Math. Comp., 47 (1986), 437459. 

16 
R. L. Higdon, Numerical absorbing boundary conditions for the wave equation, Math. Comput., 49 (1987), 6590. 

17 
A. Huang, M. Petcu and R. Temam, The onedimensional supercritical shallowwater equations with topography, Annals of the University of Bucharest, Mathematical Series 2 (LX), no. 1 (2011), 6382. 

18 
R. G. Keys, Absorbing boundary conditions for acoustic media, Geophysics, 50 (1985), 892902. 

19 
P.L. Lions, B. Perthame and P. E. Souganidis, Weak stability of isentropic gas dynamics for $\gamma=5/3$, in "Progress in Elliptic and Parabolic Partial Differential Equations" (Capri, 1994), 350 of Pitman Res. Notes Math. Ser., Longman, Harlow, (1996), 184192. 

20 
P.L. Lions, B. Perthame and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math., 49 (1996), 599638. 

21 
P.L. Lions, B. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and $p$systems, Comm. Math. Phys., 163 (1994), 415431. 

22 
T. T. Li and W. C. Yu, "Boundary Value Problems for Quasilinear Hyperbolic Systems," Duke University Mathematics Series, V. Duke University, Mathematics Department, Durham, NC, 1985. 

23 
A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge Texts in Applied Mathematics, Cambridge University Press, New York, 2002. 

24 
A. J. Majda and S. Osher, Initialboundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), 607675. 

25 
A. McDonald, Transparent boundary conditions for the shallow water equa tions: Testing in a nested environment, Mon. Wea. Rev., 131 (2003), 698705. 

26 
J. Nycander and K. Döös, Open boundary conditions for barotropic waves, Journal of Geophysical Research, 108 (2003). 

27 
J. Nycander, A. McC. Hogg and L. M. Frankcombe, Open boundary conditions for nonlinear channel flow, Ocean Modelling, 24 (2008), 108121. 

28 
I. M. Navon, B. Neta and M. Y. Hussaini, A perfectly matched layer approach to the linearized shallow water equations models, Monthly Weather Review, 132 (2004), 13691378. 

29 
J. Oliger and A. Sundström, Theoretical and practical aspects of some initial boundary value problems in fluid dynamics, SIAM J. Applied Math., 35 (1978), 419446. 

30 
P. Orenga, Un théorème d'existence de solutions d'un problème de shallow water, Arch. Rational Mech. Anal., 130 (1995), 183204. 

31 
D. Pritchard and L. Dickinson, The nearshore behaviour of shallowwater waves with localized initial conditions, J. Fluid Mech., 591 (2007), 413436. 

32 
M. Petcu and R. Temam, The onedimensional shallow water equations with transparent boundary conditions, Mathematical Methods in the Applied Sciences, (2011). 

33 
J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc., 291 (1985), 167187. 

34 
J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial boundary value problems, Trans. Amer. Math. Soc., 189 (1974), 303318. 

35 
A. Rousseau, R. Temam and J. Tribbia, The 3D Primitive Equations in the absence of viscosity: Boundary Conditions and wellposedness in the linearized case, J. Math. Pures Appl., 89 (2008), 297319. 

36 
A. Rousseau, R. Temam and J. Tribbia, Boundary value problems for the inviscid primitive equations in limited domains, in computational methods for the atmosphere and the oceans, Special Volume of the Handbook of Numerical Analysis, XIV, Roger M. Temam and Joseph J. Tribbia, Guest Editors, P. G. Ciarlet Editor, Elsevier, Amsterdam, (2008). 

37 
R. Salmon, Numerical solution of the twolayer shallow water equation with bottom topography, Journal of Marine Research, 60 (2002), 605638. 

38 
MC. Shiue, J. Laminie, R. Temam and J. Tribbia, Boundary value problems for the shallow water equations with topography, Journal of Geophysical Research, Oceans, 116 (2011). 

39 
R. Temam and J. Tribbia, Open boundary conditions for the primitive and Boussinesq equations, J. Atmospheric Sci. 60 (2003), 26472660. 

40 
B. Whitham, "Linear and Nonlinear Waves," Pure and Applied Mathematics, (New York). A WileyInterscience Publication. John Wiley & Sons Inc., New York 1999. 

41 
T. Warner, R. Peterson and R. Treadon, A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction, Bull. Amer. Meteor. Soc., 78 (1997), 25992617. 

42 
T. Yanagisawa, The initial boundary value problem for equations of ideal magnetohydrodynamics, Hakkaido Math. Jour., 16 (1987), 295314. 

Go to top
